DOI QR코드

DOI QR Code

점프크기추정량에 의한 수정된 로그잔차를 이용한 불연속 로그분산함수의 추정

Discontinuous log-variance function estimation with log-residuals adjusted by an estimator of jump size

  • 홍혜선 (덕성여자대학교 정보통계학과) ;
  • 허집 (덕성여자대학교 정보통계학과)
  • Hong, Hyeseon (Department of Statistics, Duksung Women's University) ;
  • Huh, Jib (Department of Statistics, Duksung Women's University)
  • 투고 : 2017.01.25
  • 심사 : 2017.02.27
  • 발행 : 2017.04.30

초록

분산함수가 불연속점을 가지는 경우, 대부분의 비모수적 함수 추정 연구에서 분산함수가 음수 값을 갖지 않기에 잔차제곱을 이용한 Nadaraya-Watson 추정량인 국소상수항추정량을 이용하였다. 한편, Huh (2014, 2016a)는 Chen 등 (2009)과 Yu와 Jones (2004)의 연구를 바탕으로 불연속 분산함수를 로그 변환한 로그분산함수를 추정 대상으로 삼아 잔차제곱이나 로그잔차제곱으로 경계점 문제를 가지지 않는 국소선형추정량을 이용하여 비모수적으로 추정하였다. Huh (2016b)는 불연속점에서 점프크기추정량을 활용하여 잔차제곱을 분산함수가 연속인 회귀모형에서 얻어진 잔차제곱인 것처럼 수정한 후 이들을 이용하여 불연속 분산함수의 추정을 연구하였다. 본 연구에서는 불연속 로그분산함수의 점프크기추정량을 이용하여 로그잔차제곱을 수정하고 불연속 로그분산함수를 국소선형추정량을 이용하여 추정하고자 한다. 제안된 추정량의 우수성을 모의실험을 통하여 Chen 등 (2009)의 로그분산함수 추정량을 이용한 Huh (2014)의 불연속 로그분산함수 추정량과 비교하고 실제자료에 적용하고자 한다.

Due to the nonnegativity of variance, most of nonparametric estimations of discontinuous variance function have used the Nadaraya-Watson estimation with residuals. By the modification of Chen et al. (2009) and Yu and Jones (2004), Huh (2014, 2016a) proposed the estimators of the log-variance function instead of the variance function using the local linear estimator which has no boundary effect. Huh (2016b) estimated the variance function using the adjusted squared residuals by the estimated jump size in the discontinuous variance function. In this paper, we propose an estimator of the discontinuous log-variance function using the local linear estimator with the adjusted log-squared residuals by the estimated jump size of log-variance function like Huh (2016b). The numerical work demonstrates the performance of the proposed method with simulated and real examples.

키워드

참고문헌

  1. Chen, L., Chen, M., and Peng, M. (2009). Conditional variance estimation in heteroscedastic regression models, Journal of Statistical Planning and Inference, 139, 236-245. https://doi.org/10.1016/j.jspi.2008.04.020
  2. Gasser, T., Sroka, L., and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression, Biometrika, 73, 625-634. https://doi.org/10.1093/biomet/73.3.625
  3. Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: The effect of estimating the mean, Journal of the Royal Statistical Society B, 51, 3-14.
  4. Hall, P., Kay, J. W., and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression, Biometrika, 77, 521-528. https://doi.org/10.1093/biomet/77.3.521
  5. Huh, J. (2005). Nonparametric detection of a discontinuity point in the variance function with the second moment function, Journal of the Korean Data & Information Science Society, 16, 591-601.
  6. Huh, J. (2009). Testing a discontinuity point in the log-variance function based on likelihood, Journal of the Korean Data & Information Science Society, 20, 1-9.
  7. Huh, J. (2014). Comparison study on kernel type estimators of discontinuous log-variance, Journal of the Korean Data & Information Science Society, 25, 87-95. https://doi.org/10.7465/jkdi.2014.25.1.87
  8. Huh, J. (2016a). Estimation of a change point in the variance function based on the $x^2$-distribution, Communications in Statistics - Theory and Methods, 45, 4937-4968. https://doi.org/10.1080/03610926.2014.930912
  9. Huh, J. (2016b). Nonparametric estimation of the discontinuous variance function using adjusted residuals, Journal of the Korean Data & Information Science Society, 27, 111-120. https://doi.org/10.7465/jkdi.2016.27.1.111
  10. Kang, K. H. and Huh, J. (2006). Nonparametric estimation of the variance function with a change point, Journal of the Korean Data & Information Science Society, 35, 1-24.
  11. Kang, K. H., Koo, J. Y., and Park, C. W. (2000). Kernel estimation of discontinuous regression functions, Statistics and Probability Letters, 47, 277-285. https://doi.org/10.1016/S0167-7152(99)00165-0
  12. Muller, H. G. and Stadtmuller, U. (1987). Estimation of heteroscedasticity in regression analysis, Annals of Statistics, 15, 610-625. https://doi.org/10.1214/aos/1176350364
  13. Rice, J. (1984). Bandwidth choice for nonparametric regression, Annals of Statistics, 12, 1215-1230. https://doi.org/10.1214/aos/1176346788
  14. Ruppert, D., Wand, M. P., Holst, U., and Hossjer, O. (1997). Local polynomial variance-function estimation, Technometrics, 39, 262-273. https://doi.org/10.1080/00401706.1997.10485117
  15. Yu, K. and Jones, M. C. (2004). Likelihood-Based Local Linear Estimation of the Conditional Variance Function, Journal of the American Statistical Association, 99, 139-144. https://doi.org/10.1198/016214504000000133