References
- Bakshi, G., Kapadia, N., and Madan, D. (2003). Stock return characteristics, skew laws, and the differential pricing of individual equity options, The Review of Financial Studies, 16, 101-143. https://doi.org/10.1093/rfs/16.1.0101
- Barndorff-Nielsen, O. E. (1997). Processes of normal inverse gaussian type, Finance and Stochastics, 2, 41-68. https://doi.org/10.1007/s007800050032
- Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics, Chapman and Hall, London.
- Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities, The Journal of Political Economy, 2, 637-654.
- Carr, P., Geman, H., Madan, D., and Yor, M. (2002). The fine structure of asset returns: an empirical investigation, Journal of Business, 75, 305-333. https://doi.org/10.1086/338705
- Cepni, O., Goncu, A., Karahan, M. O., and Kuzubas, T. U. (2013). Goodness-of-Fit of the Heston, Variance- Gamma and Normal-Inverse Gaussian Models (Research paper), Bogazici University, Istanbul.
- Charlier, C. (1928). A new form of the frequency function, Maddalende fran Lunds Astronomiska Observa- torium, II, 51.
- Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes, Chapman & Hall/CRC, Boca Raton.
- Eriksson, A., Ghysels, E., and Wang, F. (2009). The normal inverse gaussian distribution and the pricing of derivatives, The Journal of Derivatives, 16, 23-37. https://doi.org/10.3905/JOD.2009.16.3.023
- Geman, H. (2002). Pure jump L'evy processes for asset price modeling, Journal of Banking and Finance, 26, 1297-1316. https://doi.org/10.1016/S0378-4266(02)00264-9
- Heston, S. (1993). A closed-form solution for options with stochastic volatility with application to bond and currency options, Review of Financial Studies, 6, 327-343. https://doi.org/10.1093/rfs/6.2.327
- Jarrow, R. and Rudd, A. (1982). Approximate option valuation for arbitrary stochastic processes, Journal of Financial Economics, 10, 347-369. https://doi.org/10.1016/0304-405X(82)90007-1
- Kim, T. and Song, S. (2011). Value-at-risk estimation using NIG and VG distribution, Journal of the Korean Data Analysis Society, 13, 1775-1788.
- Lee, J. and Song, S. (2016). Comparison of methods of approximating option prices with variance gamma processes, The Korean Journal of Applied Statistics, 29, 181-192. https://doi.org/10.5351/KJAS.2016.29.1.181
- Madan, D. and Milne, F. (1994). Contingent claims valued and hedged by pricing and investing in a basis, Mathematical Finance, 4, 223-245. https://doi.org/10.1111/j.1467-9965.1994.tb00093.x
- Madan, D. and Seneta, E. (1990). The VG model for share market returns, Journal of Business, 63, 511-524. https://doi.org/10.1086/296519
- Mikhailov, S. and Nogel, U. (2003). Heston's stochastic volatility model implementation, calibration and some extensions, Wilmott Magazine, 74-94.
- Prause, K. (1999). The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Mea- sures (Doctoral dissertation), University of Freiburg, Freiburg.
- Rompolis, L. S. and Tzavalis, E. (2007). Retrieving risk neutral densities based on risk neutral moments through a Gram-Charlier series expansion, Mathematical and Computer Modelling, 46, 225-234. https://doi.org/10.1016/j.mcm.2006.12.021
- Rouah, F. (2013). The Heston Model and its Extensions in Matlab and C#, John Wiley & Sons, New Jersey.
- Schoutens, W. (2003). Levy Processes in Finance: Pricing Financial Derivatives, John Wiley & Sons, New York.
- Seung, J. (2013). Comparison of Approximate Option Pricing Methods under Normal Inverse Gaussian Model (Master dissertation), Korea University, Seoul.
- Song, S., Jeong, J., and Song, J. (2011). Asymptotic option pricing under pure jump L,evy processes via nonlinear regression, Journal of the Korean Statistical Society, 40, 227-238. https://doi.org/10.1016/j.jkss.2010.10.001