DOI QR코드

DOI QR Code

Numerical studies on approximate option prices

근사적 옵션 가격의 수치적 비교

  • Received : 2017.01.20
  • Accepted : 2017.03.15
  • Published : 2017.04.30

Abstract

In this paper, we compare several methods to approximate option prices: Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method using normal inverse gaussian (NIG) distribution, and an asymptotic method using nonlinear regression. We used two different types of approximation. The first (called the RNM method) approximates the risk neutral probability density function of the log return of the underlying asset and computes the option price. The second (called the OPTIM method) finds the approximate option pricing formula and then estimates parameters to compute the option price. For simulation experiments, we generated underlying asset data from the Heston model and NIG model, a well-known stochastic volatility model and a well-known Levy model, respectively. We also applied the above approximating methods to the KOSPI200 call option price as a real data application. We then found that the OPTIM method shows better performance on average than the RNM method. Among the OPTIM, A-type Gram-Charlier expansion and the asymptotic method that uses nonlinear regression showed relatively better performance; in addition, among RNM, the method of using NIG distribution was relatively better than others.

본 논문에서는 옵션의 가격을 결정하기 위해 사용될 수 있는 몇 가지 근사적인 방법들을 수치적으로 비교하였다. 헤르미트 다항식 계열의 Edgeworth 확장과 A-type Gram-Charlier 방법, C-type Gram-Charlier 방법, normal inverse gaussian (NIG) 분포를 이용하는 방법, 그리고 비선형 회귀를 이용한 점근적 근사방법이 그것이다. 이 방법들을 위험중립 확률측도 하에서 수익률의 분포함수를 근사하여 옵션가격을 계산하는 방식과 옵션의 근사가격식을 먼저 구하고 모수를 추정하여 가격을 계산하는 두 가지 방식을 사용하여 비교하였다. 모의실험에서는 확률변동성 모형에서 많이 사용되는 Heston 모형과 레비확률과정에서 좋은 적합도를 보이는 NIG 모형을 이용하여 자료를 생성하였고, 실제 자료로는 KOSPI200 콜옵션을 이용하였다. 모의실험과 실제 자료분석의 결과, 근사적 가격식을 먼저 구하는 방식이 좀 더 우수한 성능을 보였고 그 가운데 A-type Gram-Charlier와 비선형 회귀를 이용한 점근적 근사방법이 좋은 성능을 보였으며, 분포함수를 추정하여 옵션가격을 계산하는 경우 NIG분포를 이용하는 것이 상대적으로 좋은 결과를 보였다.

Keywords

References

  1. Bakshi, G., Kapadia, N., and Madan, D. (2003). Stock return characteristics, skew laws, and the differential pricing of individual equity options, The Review of Financial Studies, 16, 101-143. https://doi.org/10.1093/rfs/16.1.0101
  2. Barndorff-Nielsen, O. E. (1997). Processes of normal inverse gaussian type, Finance and Stochastics, 2, 41-68. https://doi.org/10.1007/s007800050032
  3. Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics, Chapman and Hall, London.
  4. Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities, The Journal of Political Economy, 2, 637-654.
  5. Carr, P., Geman, H., Madan, D., and Yor, M. (2002). The fine structure of asset returns: an empirical investigation, Journal of Business, 75, 305-333. https://doi.org/10.1086/338705
  6. Cepni, O., Goncu, A., Karahan, M. O., and Kuzubas, T. U. (2013). Goodness-of-Fit of the Heston, Variance- Gamma and Normal-Inverse Gaussian Models (Research paper), Bogazici University, Istanbul.
  7. Charlier, C. (1928). A new form of the frequency function, Maddalende fran Lunds Astronomiska Observa- torium, II, 51.
  8. Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes, Chapman & Hall/CRC, Boca Raton.
  9. Eriksson, A., Ghysels, E., and Wang, F. (2009). The normal inverse gaussian distribution and the pricing of derivatives, The Journal of Derivatives, 16, 23-37. https://doi.org/10.3905/JOD.2009.16.3.023
  10. Geman, H. (2002). Pure jump L'evy processes for asset price modeling, Journal of Banking and Finance, 26, 1297-1316. https://doi.org/10.1016/S0378-4266(02)00264-9
  11. Heston, S. (1993). A closed-form solution for options with stochastic volatility with application to bond and currency options, Review of Financial Studies, 6, 327-343. https://doi.org/10.1093/rfs/6.2.327
  12. Jarrow, R. and Rudd, A. (1982). Approximate option valuation for arbitrary stochastic processes, Journal of Financial Economics, 10, 347-369. https://doi.org/10.1016/0304-405X(82)90007-1
  13. Kim, T. and Song, S. (2011). Value-at-risk estimation using NIG and VG distribution, Journal of the Korean Data Analysis Society, 13, 1775-1788.
  14. Lee, J. and Song, S. (2016). Comparison of methods of approximating option prices with variance gamma processes, The Korean Journal of Applied Statistics, 29, 181-192. https://doi.org/10.5351/KJAS.2016.29.1.181
  15. Madan, D. and Milne, F. (1994). Contingent claims valued and hedged by pricing and investing in a basis, Mathematical Finance, 4, 223-245. https://doi.org/10.1111/j.1467-9965.1994.tb00093.x
  16. Madan, D. and Seneta, E. (1990). The VG model for share market returns, Journal of Business, 63, 511-524. https://doi.org/10.1086/296519
  17. Mikhailov, S. and Nogel, U. (2003). Heston's stochastic volatility model implementation, calibration and some extensions, Wilmott Magazine, 74-94.
  18. Prause, K. (1999). The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Mea- sures (Doctoral dissertation), University of Freiburg, Freiburg.
  19. Rompolis, L. S. and Tzavalis, E. (2007). Retrieving risk neutral densities based on risk neutral moments through a Gram-Charlier series expansion, Mathematical and Computer Modelling, 46, 225-234. https://doi.org/10.1016/j.mcm.2006.12.021
  20. Rouah, F. (2013). The Heston Model and its Extensions in Matlab and C#, John Wiley & Sons, New Jersey.
  21. Schoutens, W. (2003). Levy Processes in Finance: Pricing Financial Derivatives, John Wiley & Sons, New York.
  22. Seung, J. (2013). Comparison of Approximate Option Pricing Methods under Normal Inverse Gaussian Model (Master dissertation), Korea University, Seoul.
  23. Song, S., Jeong, J., and Song, J. (2011). Asymptotic option pricing under pure jump L,evy processes via nonlinear regression, Journal of the Korean Statistical Society, 40, 227-238. https://doi.org/10.1016/j.jkss.2010.10.001