DOI QR코드

DOI QR Code

A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading

  • Vinyas, M. (Department of Mechanical Engineering, National Institute of Technology Karnataka) ;
  • Kattimani, S.C. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
  • Received : 2017.02.13
  • Accepted : 2017.03.16
  • Published : 2017.06.10

Abstract

In this article, static analysis of a magneto-electro-elastic (MEE) beam subjected to various thermal loading and boundary conditions has been investigated. Influence of pyroeffects (pyroelectric and pyromagnetic) on the direct quantities (displacements and the potentials) of the MEE beam under different boundary conditions is studied. The finite element (FE) formulation of the MEE beam is developed using the total potential energy principle and the constitutive equations of the MEE material taking into account the coupling between elastic, electric, magnetic and thermal properties. Using the Maxwell electrostatic and electromagnetic relations, variation of stresses, displacements, electric and magnetic potentials along the length of the MEE beam are investigated. Effect of volume fractions, aspect ratio and boundary conditions on the direct quantities in thermal environment has been determined. The present investigation may be useful in design and analysis of magnetoelectroelastic smart structures and sensor applications.

Keywords

References

  1. Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2007), "Free vibration behavior of multiphase and layered magneto-electroelastic beam", J. Sound Vib., 299, 44-63. https://doi.org/10.1016/j.jsv.2006.06.044
  2. Ansari, R., Gholami, R. and Rouhi, H. (2015), "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermoelastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Compos. Struct., 126, 216-226. https://doi.org/10.1016/j.compstruct.2015.02.068
  3. Badri, T.M. and Al-Kayiem, H.H. (2013), "Analytical solution for simply supported and multilayered Magneto-Electro-Elastic Plates", Asian J. Sci. Res., 6, 236-244 https://doi.org/10.3923/ajsr.2013.236.244
  4. Beni, Y.T. (2016), "Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling", Mech. Res. Commun., 75, 67-80. https://doi.org/10.1016/j.mechrescom.2016.05.011
  5. Bhangale, R.K. and Ganesan, N. (2006), "Free vibration of simply supported functionally graded and layered magneto-electroelastic plates by finite element method", J. Sound Vib., 294, 1016-1038. https://doi.org/10.1016/j.jsv.2005.12.030
  6. Biju, B., Ganesan, N. and Shankar, K. (2011), "Dynamic response of multiphase magnetoelectroelastic sensors using 3D magnetic vector potential approach", IEEE Sens. J., 11(9), 2169-2176. https://doi.org/10.1109/JSEN.2011.2112346
  7. Biju, B., Ganesan, N. and Shankar, K. (2012), "Effect of displacement current in magneto-electro-elastic plates subjected to dynamic loading", Int. J. Mech. Mater. Des., 8(4), 349-358. https://doi.org/10.1007/s10999-012-9200-z
  8. Challagulla, K.S. and Georgiades, A.V. (2011), "Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures", Int. J. Eng. Sci., 49, 85-104. https://doi.org/10.1016/j.ijengsci.2010.06.025
  9. Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vib., 304, 722-734. https://doi.org/10.1016/j.jsv.2007.03.021
  10. Chen, W.Q., Lee, K.Y. and Ding, H.J. (2005), "On free vibration of non homogeneous transversely isotropic magneto-electroelastic plates", J. Sound Vib., 279, 237-251. https://doi.org/10.1016/j.jsv.2003.10.033
  11. Daga, A., Ganesan, N. and Shankar, K. (2009), "Transient dynamic response of cantilever Magneto-Electro-Elastic beam using finite elements", Int. J. Comput. Meth. Eng. Sci. Mech., 10, 173-185 https://doi.org/10.1080/15502280902797207
  12. Ebrahimi, F. and Barati, M.R. (2016), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122, 451. https://doi.org/10.1007/s00339-016-0001-3
  13. Gornandt, A. and Gabbert, U. (2002), "Finite element analysis of thermopiezoelectric smart structures", Acta Mechanica, 154, 129-140. https://doi.org/10.1007/BF01170703
  14. Gupta, V., Sharma, M., Thakur, N. and Singh, S.P. (2011), "Active vibration control of a smart plate using a piezoelectric sensor-actuator pair at elevated temperatures", Smart Mater. Struct., 20, 105023. https://doi.org/10.1088/0964-1726/20/10/105023
  15. Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013), "Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: Part I Theory", Eur. J. Mech. A/Solid., 39, 298-312. https://doi.org/10.1016/j.euromechsol.2012.11.009
  16. Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013), "Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: Part 2-Applications", Eur. J. Mech. A/Solid., 39, 313- 327. https://doi.org/10.1016/j.euromechsol.2012.11.003
  17. Jandaghian, A.A. and Rahmani, O. (2016), "Free vibration analysis of magneto-electro thermo-elastic nanobeams resting on a Pasternak foundation", Smart Mater. Struct., 25, 035023. https://doi.org/10.1088/0964-1726/25/3/035023
  18. Kattimani, S.C. and Ray, M.C. (2014), "Active control of large amplitude vibrations of smart magneto-electro-elastic doubly curved shells", Int. J. Mech. Mater. Des., 10(4), 351-378. https://doi.org/10.1007/s10999-014-9252-3
  19. Kattimani, S.C. and Ray, M.C. (2014), "Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates", Compos. Struct., 14, 51-63.
  20. Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electroelastic plates", Int. J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012
  21. Kim, J.Y., Li, Z. and Baltazar, A. (2012), "Pyroelectric and pyromagnetic coefficients of functionally graded multilayered multiferroic composites", Acta Mechanica, 223, 849-860. https://doi.org/10.1007/s00707-011-0611-y
  22. Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Coupl. Syst. Mech., 1(2), 205-217 https://doi.org/10.12989/csm.2012.1.2.205
  23. Kondaiah, P., Shankar, K. and Ganesan, N. (2013), "Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate", Coupl. Syst. Mech., 2, 1-22. https://doi.org/10.12989/csm.2013.2.1.001
  24. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment", Multidisc. Model. Mater. Struct., 3, 461-476. https://doi.org/10.1163/157361107782106401
  25. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steadystate analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16, 282-295. https://doi.org/10.1088/0964-1726/16/2/006
  26. Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82, 1293-1301. https://doi.org/10.1016/j.compstruc.2004.03.026
  27. Milazzo, A., Orlando, C. and Alaimo, A. (2009), "An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem", Smart Mater. Struct., 18(8), 85012. https://doi.org/10.1088/0964-1726/18/8/085012
  28. Ootao, Y. and Tanigawa, Y. (2005), "Transient analysis of multilayered magneto-electro-thermoelastic strip due to nonuniform heat supply", Compos. Struct., 68, 471-480. https://doi.org/10.1016/j.compstruct.2004.04.013
  29. Pan, E. (2001), "Exact solution for simply supported and multilayered Magneto-Electro-Elastic plates", Tran. ASME, 68, 608-618. https://doi.org/10.1115/1.1380385
  30. Panda, S. and Ray, M.C. (2008), "Nonlinear finite element analysis of functionally graded plates integrated with patches of piezoelectric fiber reinforced composite", Finite Elem. Anal. Des., 44, 493-504. https://doi.org/10.1016/j.finel.2008.01.001
  31. Rahman, N. and Naushad Alam, M. (2015), "Structural control of piezoelectric laminated beams under thermal load", J. Therm. Stress., 38, 69-95. https://doi.org/10.1080/01495739.2014.976138
  32. Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292, 626-644. https://doi.org/10.1016/j.jsv.2005.08.004
  33. Ray, M.C. and Batra, R.C. (2008), "Smart constrained layer damping of functionally graded shells using vertically/obliquely reinforced 1-3 piezocomposite under a thermal Environment", Smart Mater. Struct., 17, 055007. https://doi.org/10.1088/0964-1726/17/5/055007
  34. Ray, M.C., Bhattacharya, R. and Samanta, B. (1994), "Static analysis of an intelligent structure by the finite element method", Comput. Struct., 52, 617-631. https://doi.org/10.1016/0045-7949(94)90344-1
  35. Sharnappa, G.N. and Sethuraman, R. (2010), "Thermally induced vibrations of piezo-thermo-viscoelastic-composite beam with relaxation times and system response", Multidisc. Model. Mater. Struct., 6(1), 120-140. https://doi.org/10.1108/15736101011055293
  36. Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40, 1845-1851.
  37. Tauchert, T.R. (1996), "Cylindrical bending of hybrid laminates under thermo-electro-mechanical loading", J. Therm. Stress., 19, 287-296. https://doi.org/10.1080/01495739608946175
  38. Vaezi, M., Shirbani, M.M. and Hajnayeb, A. (2016), "Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads", Physica E, 75, 280-286. https://doi.org/10.1016/j.physe.2015.09.019
  39. Xin, L. and Hu, Z (2015), "Free vibration of layered magnetoelectro-elastic beams by SS-DSC approach", Compos. Struct., 125, 96-103. https://doi.org/10.1016/j.compstruct.2015.01.048

Cited by

  1. micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment vol.5, pp.12, 2018, https://doi.org/10.1088/2053-1591/aae0c8
  2. Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate vol.29, pp.7, 2017, https://doi.org/10.1177/1045389x17740739
  3. Buckling analysis of skew magneto-electro-elastic plates under in-plane loading vol.29, pp.10, 2017, https://doi.org/10.1177/1045389x18758191
  4. Dynamic modeling of smart magneto-electro-elastic curved nanobeams vol.7, pp.3, 2017, https://doi.org/10.12989/anr.2019.7.3.145
  5. A finite element-based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory vol.30, pp.16, 2019, https://doi.org/10.1177/1045389x19862386
  6. An element free Galerkin method for static behavior of a magneto-electro-elastic beam in thermal environments vol.28, pp.11, 2019, https://doi.org/10.1088/1361-665x/ab47c1
  7. Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory vol.73, pp.6, 2017, https://doi.org/10.12989/sem.2020.73.6.667
  8. Dynamic analysis of magneto-electro-elastic nanostructures using node-based smoothed radial point interpolation method combined with micromechanics-based asymptotic homogenization technique vol.31, pp.20, 2020, https://doi.org/10.1177/1045389x20935572