• Title/Summary/Keyword: temperature profiles

Search Result 991, Processing Time 0.027 seconds

Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation (막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포)

  • 강희찬;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF

An Experimental Study of Temperature Profiles in Mixing Zone of AHU with an Air Mixer (에어믹서가 설치된 공조기 혼합실 내의 온도분포에 관한 실험적 연구)

  • Pak, Kwon-Jong;Lee, Sek-Jun;Jang, Young-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.999-1006
    • /
    • 2006
  • A study of temperature profiles in mixing zone of AHU (air handling unit) can contribute greatly to enhance performance of AHU system, so the study on the temperature distribution between RA (return air) and OA (outdoor air) is important to analyze the mixing characteristics in a mixing zone of AHU. Accordingly, the temperature profiles during RA (return air) and OA (outdoor air) supply process into mixing zone of AHU with an air mixer are studied experimentally. The effect of air mixer, OA temperature and RA/OA flow rate are studied in detail. In this study, the results show that the mixing efficiency is all high for installed the air mixer. The more OA temperature increase and OA flow rate decrease, the more mixing efficiency is high.

Study on Narrow Band Solution of the Radiative Transfer within a Cubical Enclosure by Nongray Gas Mixtures with Nonuniform Concentration Profiles (비균일 농도 분포를 갖는 비회색 혼합가스로 충만된 정육면체 내의 좁은 파장모델을 이용한 복사열전달 해석 연구)

  • Park, W.H.;Chun, S.H.;Kim, T.K.;Son, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.371-376
    • /
    • 2001
  • Radiative transfer by nongray gas mixtures with nonuniform concentration and temperature profiles were studied by using the statistical narrow-band model and ray-tracing method with the sufficiently accurate $T_{60}$ quadrature set. Transmittances through the nonhomogeneous gas mixtures were calculated by using the Curtis-Godson approximation. Three different cases with different temperature and concentration profiles were considered to obtain benchmark solutions for nongray gas mixtures with nonuniform concentration and temperature profiles. The solutions obtained from this study were verified and found to be very well matched with the previous solutions for uniform gas mixtures. The results presented in this paper can be used in developing various solution methods for radiative transfer by nongray gas mixtures.

  • PDF

Redox Property of Vanadium Oxide and Its Behavior in Cataltic Oxidation

  • 김영호;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1457-1463
    • /
    • 1999
  • Structure and their redox property of the vanadium oxides prepared by decomposing NH₄VO₃ at various temperatures were studied by XRD, SEM, XPS, and temperature programmed reduction/temperature programmed oxidation (TPR/TPO) experiment. All TPR profiles have two sharp peaks in the temperature range 650-750℃, and the area ratio of the two sharp peaks changed from sample to sample. There were three redox steps in TPR/TPO profiles. The oxidation proceeded in the reverse order of the reduction process, and both the reactions proceeded via quite a stable intermediates. The changes of the morphological factor $(I_{(101)}/I_{(010)})$, the ratio of $O_{1S}$ peak area (O$_{1S}$( α)/O$_{1S}$( β)) in the XPS results, and the ratio of hydrogen consumption in TPR profiles with various vanadium oxides showed the distinct relationship between the structural property and their redox property of vanadium oxides. The change of the specific yield of phthalic anhydride with various vanadium oxides showed a very similar trend to those of the peak area ratio in TPR profiles, which meant that the first reduction step related to the partial oxidation of o-xylene on the vanadium oxide catalyst.

Design thermal loading for composite bridges in tropical region

  • Au, F.T.K.;Cheung, S.K.;Tham, L.G.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.441-460
    • /
    • 2002
  • In the design of bridges, it is important to consider the thermal stresses induced by the non-linear temperature distribution as well as the variation of effective temperature in the bridge deck. To cope with this, design temperature profiles are provided by design codes, which are normally based on extensive research work. This paper presents the results of a comprehensive investigation on the thermal behaviour of bridges in Hong Kong with special emphasis on composite bridges. The temperature distribution in bridges depends primarily on the solar radiation, ambient air temperature and wind speed in the vicinity. Apart from data of the meteorological factors, good estimates of the thermal properties of material and the film coefficients are necessary for the prediction of temperature distribution. The design temperature profiles for various types of composite bridge deck with bituminous surfacing and concrete slab of different thicknesses are proposed. The factors affecting the design effective temperature are also reviewed and suitable values for Hong Kong are proposed. Results are compared with recommendations of the current local code. The method facilitates the development of site-specific temperature profiles for code documents, and it can also be applied to create zoning maps for temperature loading for large countries where there are great climatic differences.

Changes in the body temperature of Proprioceptive activity by external stimulation

  • Kim, Eun-Sung;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.827-831
    • /
    • 2005
  • Acupuncture and Low-frequency-wave stimulation at the Points (LI4, LI6, LI8 and LI11) on the large intestine meridian of hand resulted in same pattern about body temperature profiles with time. Upon 4Hz and 50Hz stimulation the temperature profiles on LI6 and LI11 were declined probably because of their relationship with Proprioceptive activity. Temperature different at the points was higher when the intensity of low-frequency-wave stimulation was stronger.

  • PDF

Understanding of the effect of charge size to temperature profile in the Czochralski method (쵸크랄스키법에서 온도 프로파일에 대한 충진사이즈의 효과에 대한 이해)

  • Baik, Sungsun;Kwon, Sejin;Kim, Kwanghun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.141-147
    • /
    • 2018
  • Solar energy has attracted big attentions as one of clean and unlimited renewable energy. Solar energy is transformed to electrical energy by solar cells which are comprised of multi-silicon wafer or mono-silicon wafer. Monosilicon wafers are fabricated from the Czochralski method. In order to decrease fabrication cost, increasing a poly-silicon charge size in one quartz crucible has been developed very much. When we increase a charge size, the temperature control of a Czochralski equipment becomes more difficult due to a strong melt convection. In this study, we simulated a Czochralski equipment temperature at 20 inch and 24 inch in quartz crucible diameter and various charge sizes (90 kg, 120 kg, 150 kg, 200 kg, 250 kg). The simulated temperature profiles are compared with real temperature profiles and analyzed. It turns out that the simulated temperature profiles and real temperature profiles are in good agreement. We can use a simulated profile for the optimization of real temperature profile in the case of increasing charge sizes.

Stable Oxygen and Carbon Isotope Profiles of the Bivalve Shells collected from Coastal Regions of Korea: Comparison of the Coastal Water Properties

  • Khim, Boo-Keun
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.28-37
    • /
    • 1997
  • Two marine bivalve shells were collected from the eastern and western coastal regions of Korea, respectively. Stable oxygen and carbon isotope profiles are constructed using the incremental sampling along the axis of maximum growth to provide the continuous ${\delta}^{18}$O and ${\delta}^{13}$C records, which register the physical, biological and chemical properties of seawater where the organisms live. Cycles in the ${\delta}^{18}$O profiles are interpreted as annual along with the identification of annual growth bands; the maximum ${\delta}^{18}$O values correspond with the coldest temperature of seawater whereas the minimum ${\delta}^{18}$O values with the warmest temperature. The primary control on the amplitude of the ${\delta}^{18}$O profiles is seasonal variation of seawater temperature. The offset of the baseline between ${\delta}^{18}$O values of the two specimens is attributed to differences in both temperature and seawater ${\delta}^{18}$O values between two localities. The ${\delta}^{13}$C profiles show the similar seasonality of carbon cycling associated with phytoplankton productivity. The offset in the ${\delta}^{13}$C profiles between two specimens may be, as in the case of oxygen isotope profile, attributed to the different ${\delta}^{13}$C value of the seawater DIC (dissolved inorganic carbon) between the western coast and the eastern coast. Relationships between the shell isotopic composition and the coastal water properties of shell growth are readily interpreted from the ${\delta}^{18}$O-${\delta}^{13}$C pair diagram of the shell isotope data, similar to the use of salinity-${\delta}^{18}$O diagram for identifying water masses. The preliminary stable isotope results of this study suggest that mollusk shell isotope geochemistry may be useful to monitor the properties of water masses in the coastal and inner shelf setting around Korea and improve the interpretation of paleoceanography, provided the fossil mollusks are well preserved.

  • PDF

ATOSPHERIC CORRECTION FOR ASTER THERMAL RADIOMETRY USING MODIS ATMOSPHERIC PROFILES

  • Park, Wook;Choi, Jae-Won;Lee, Yoon-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.305-308
    • /
    • 2008
  • The goal of this study is to retrieve ASTER thermal radiometry using a radiative transfer model. The MODTRAN is used for the model because it is easy to use with high spatial resolution and it is possible to specify input parameters such as profiles of temperature, water vapor density, ozone, aerosols and any of the other gasses. Most of parameters such as temperature and water vapor profiles were obtained from the Terra MODIS. The selected ASTER scene images land and coastal area. The surface radiance of ASTER TIR bands were retrieved by MODTRAN and extracted atmospheric profiles from MOD07 and US standard 76 models. Radiance estimated using MOD07 data was systematically lower by about 0.5-1.0 $W/m^2$ sr ${\mu}m$ than that by US standard 76 model between the two cases.

  • PDF