Acknowledgement
Supported by : Scientific and Technological Research Council of Turkey (TUBITAK)
References
- Akgoz, B. and Civalek, O. (2013a), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., Int. J., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Akgoz, B. and Civalek, O. (2013b), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
- Akgoz, B. and Civalek, O. (2015a), "A novel microstructuredependent shear deformable pipes conveying fluid", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
- Akgoz, B. and Civalek, O. (2015b), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Comp. Struct., 134, 294-301. https://doi.org/10.1016/j.compstruct.2015.08.095
- Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
- Ansari, R., Gholami, R., Norouzzadeh, A. and Sahmani, S. (2015), "Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory", Microfluid. Nanofluid., 19(3), 509-522. https://doi.org/10.1007/s10404-015-1577-1
- Atci, D. and Bagdatli, S.M. (2017), "Vibrations of fluid conveying microbeams under non-ideal boundary conditions", Microsyst. Technol., 1-12. DOI: 10.1007/s00542-016-3255-y
- Bagdatli, S.M. and Uslu, B. (2015), "Free vibration analysis of axially moving beam under non-ideal conditions", Struct. Eng. Mech., Int. J., 54(3), 597-605. https://doi.org/10.12989/sem.2015.54.3.597
- Bagdatli, S.M., Ozkaya, E. and Oz, H.R. (2013), "Dynamics of axially accelerating beams with multiple supports", Nonlin. Dyn., 74(1-2), 237-255. https://doi.org/10.1007/s11071-013-0961-1
- Baohui, L., Hangshan, G., Yongshou, L. and Zhufeng, Y. (2012), "Free vibration analysis of micro pipe conveying fluid by wave method", Results Physics, 2, 104-109. https://doi.org/10.1016/j.rinp.2012.08.002
- Chakraborty, G., Mallik, A.K. and Hatwal, H. (1998), "Non-linear vibration of a travelling beam", Int. J. Nonlin. Mech., 34(4), 655-670.
- Chong, A.C.M. and Lam, D.C.C. (1999), "Strain gradient plasticity effect in indentation hardness of polymers", J. Materials Res., 14(10), 4103-4110. https://doi.org/10.1557/JMR.1999.0554
- Ding, H. and Chen, L. (2011), "Natural frequencies of nonlinear vibration of axially moving beams", Nonlin. Dyn., 63(1), 125-134. https://doi.org/10.1007/s11071-010-9790-7
- Ekici, H.O. and Boyaci, H. (2007), "Effects of non-ideal boundary conditions on vibrations of micro beams", J. Vib. Control, 13(9-10), 1369-1378. https://doi.org/10.1177/1077546307077453
- Ellis, S.R.W. and Smith, C.W. (1968), "A thin plate analysis and experimental evaluation of couple stress effects", Exper. Mech., 7(9), 372-380. https://doi.org/10.1007/BF02326308
- Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: theory and experiment", Acta Metall. Mater., 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
- Hosseini, M. and Bahaadini, R. (2016), "Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory", Int. J. Eng. Sci., 101, 1-13. https://doi.org/10.1016/j.ijengsci.2015.12.012
- Ibrahim, R.A. (2010), "Overview of mechanics of pipes conveying fluids-Part I: Fundamental studies", J. Press. Vessel Tech., 132(3), 034001. https://doi.org/10.1115/1.4001271
- Ibrahim, R.A. (2011), "Mechanics of pipes conveying fluids-Part II: Applications and fluid elastic problems", J. Pressure Vessel Tech., 133(2), 024001. https://doi.org/10.1115/1.4001270
- Kesimli, A., Ozkaya, E. and Bagdatli, S.M. (2015), "Nonlinear vibrations of spring-supported axially moving string", Nonlin. Dyn., 81(3), 1523-1534. https://doi.org/10.1007/s11071-015-2086-1
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The sizedependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
- Kural, S. and Ozkaya, E. (2012), "Vibrations of an axially accelerating, multiple supported flexible beam", Struct. Eng. Mech., Int. J., 44(4), 521-538. https://doi.org/10.12989/sem.2012.44.4.521
- Kural, S. and Ozkaya, E. (2015), "Size-dependent vibrations of a micro-beam conveying fluid and resting on an elastic foundation", J. of Vib. Cont., 23(7), 1106-1114. DOI: 10.1177/1077546315589666.
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lee, J. (2013), "Free vibration analysis of beams with non-ideal clamped boundary conditions", J. Mech. Sci. Tech., 27(2), 297-303. https://doi.org/10.1007/s12206-012-1245-2
- Li, L., Hu, Y., Li, X. and Ling, L. (2016), "Size-dependent effects on critical flow velocity of fluid-conveying microtubes via nonlocal strain gradient theory", Microfluidics and Nanofluidics, 20(5), 76. https://doi.org/10.1007/s10404-016-1739-9
- Ma, Q. and Clarke, D.R. (1995), "Size dependent hardness of silver single crystals", J. Materials Res., 10(04), 853-863. https://doi.org/10.1557/JMR.1995.0853
- Ma, H.M., Gao, X-L. and Reddy, J.N. (2008), "A microstructuredependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- McFarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060-1067. https://doi.org/10.1088/0960-1317/15/5/024
- Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Archive Rational Mech. Analy., 16(1), 51-78. https://doi.org/10.1007/BF00248490
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple stresses in linear elasticity", Arch. Ration. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946
- Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, John Wiley & Sons, USA.
- Ni, Q., Zhang, Z.L. and Wang, L. (2011), "Application of the differential transformation method to vibration analysis of pipes conveying fluid", Appl. Math. Comp., 217(16), 7028-7038. https://doi.org/10.1016/j.amc.2011.01.116
- Paidoussis, M.P. and Li, G.X. (1993), "Pipes conveying fluid: A model dynamical problem", J. Fluids Struct., 7(2), 137-204. https://doi.org/10.1006/jfls.1993.1011
- Paidoussis, M.P., Semler, C., Wadham-Gagnon, M. and Saaid, S. (2007), "Dynamics of cantilevered pipes conveying fluid. Part 2: Dynamics of system with intermediate spring support", J. Fluids Struct., 23(4), 569-587. https://doi.org/10.1016/j.jfluidstructs.2006.10.009
- Pakdemirli, M. and Boyaci, H. (2001), "Vibrations of a stretched beam with non-ideal boundary conditions", Math. Comp. Appl., 6(3), 217-220.
- Pakdemirli, M. and Boyaci, H. (2002), "Effect of non-ideal boundary conditions on the vibrations of continuous systems", J. Sound Vib., 249(4), 815-823. https://doi.org/10.1006/jsvi.2001.3760
- Pakdemirli, M. and Boyaci, H. (2003), "Non-linear vibrations of a simple-simple beam with a non-ideal support in between", J. Sound Vib., 268, 331-341. https://doi.org/10.1016/S0022-460X(03)00363-8
- Park, S.K. and Gao, X-L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015
- Stolken, J.S. and Evans, A.G. (1998), "Microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
- Thurman, A.L. and Mote, C.D. (1969), "Free, periodic, nonlinear oscillations of an axially moving strip", J. Appl. Mech., 36, 3.
- Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Ratio. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
- Wang, L. (2010), "Size-dependent vibration characteristics of fluid-conveying micro tubes", J. Fluids Struct., 26(4), 675-684. https://doi.org/10.1016/j.jfluidstructs.2010.02.005
- Wang, L. (2012), "Vibration analysis of nanotubes conveying fluid based on gradient elasticity theory", J. Vib. Control, 18(2), 313-320. https://doi.org/10.1177/1077546311403957
- Wang, L., Gan, J. and Ni, Q. (2013a), "Natural frequency analysis of fluid-conveying pipes in the ADINA system", J. Phys.: Conference Series, 448(1), 012014.
- Wang, L., Liu, H.T., Ni, Q. and Wu, Y. (2013b), "Flexural vibrations of micro scale pipes conveying fluid by considering the size effects of micro-flow and micro-structure", Int. J. Eng. Sci., 71, 92-101. https://doi.org/10.1016/j.ijengsci.2013.06.006
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yin, L., Qian, Q. and Wang, L. (2011), "Strain gradient beam model for dynamics of microscale pipes conveying fluid", Appl. Math. Model., 35(6), 2864-2873. https://doi.org/10.1016/j.apm.2010.11.069
- Yurddas, A., Ozkaya, E. and Boyaci, H. (2012), "Nonlinear vibrations and stability analysis of axially moving strings having non-ideal mid-support conditions", J. Vib. Control, 20(4), 518-534. https://doi.org/10.1177/1077546312463760
- Yurddas, A., Ozkaya, E. and Boyaci, H. (2013), "Nonlinear vibrations of axially moving multi-supported strings having non-ideal support conditions", Nonlin. Dyn., 73(3), 1223-1244. https://doi.org/10.1007/s11071-012-0650-5
- Zeighampour, H. and Tadi Beni, Y. (2014), "Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory", Physica E, 61, 28-39. https://doi.org/10.1016/j.physe.2014.03.011
Cited by
- Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2017, https://doi.org/10.12989/sem.2021.77.2.217