DOI QR코드

DOI QR Code

A pattern of cell death induced by 40 kHz ultrasound in yeast cell model

40 kHz 초음파에 의해 유도된 효모세포 모델에서 세포사멸 패턴

  • Kim, Ji Wook (Department of Chemistry and Biology, Korea Science Academy of KAIST) ;
  • Kong, Hee Jeong (Biotechnology Research Division, National Institute of Fisheries Research) ;
  • Kim, Young H. (Applied Acoustics Laboratory, Korea Science Academy of KAIST) ;
  • Kang, Kwang Il (Department of Chemistry and Biology, Korea Science Academy of KAIST)
  • Received : 2017.01.25
  • Accepted : 2017.05.30
  • Published : 2017.05.31

Abstract

Ultrasound has been widely used for biological and medical applications including induction of cell death, but a precise mechanism of induced cell death by ultrasound is controversial. In this study, an irradiation system with 40 kHz ultrasound was developed for a suitable cell death test of a representative unicellular organism, yeast, and used to study the biological effect of ultrasound on inducing cell death. Potassium Iodide (KI) dosimetry was used to devise an optimal system that successfully delivers 40 kHz ultrasound and produces reactive oxygen species in a 1.5 ml Eppendorf tube. Cell death was observed in an ultrasound transmission time-dependent fashion in this system. Thermal effect during irradiation was not observable in ultrasound induced cell death. Co-treatment of 40 kHz ultrasound and hydrogen peroxide showed a synergistic effect in inducing cell death. This finding suggests that 40 kHz ultrasound is related to reactive oxygen species formation. However, NAC (N-acetyl-L-cysteine) oxygen scavenger slightly inhibited the cell death by 40 kHz ultrasound. It was also found that 40 kHz ultrasound induced cell death was slightly inhibited by inhibitors of necrosis or apoptosis (glycyrrhizin or zVAD-fmk). This study suggests that cell death induced by 40 kHz ultrasound may not be exclusively related to reactive oxygen species formation and thermal effects in irradiated yeast cells.

초음파는 세포사멸을 포함하여 의학 및 생물학분야에 널리 응용되고 있으나 그 정확한 기작에 대해선 논쟁의 여지가 있다. 본 연구에서는 40 kH 초음파 조사시스템을 단세포 효모에 적합하게 개발하고 세포사멸 유도시 40 kH 초음파의 생물학적 현상을 살펴보았다. 아이오딘화 칼륨 선량 측정법을 이용하여 1.5 ml 실험튜브에 40 kH 초음파 조사 시스템의 최적 조건을 맞추어 세포사멸을 시간 의존적 방식으로 연구하였고 초음파 조사과정동안 온열효과와는 별개로 세포 사멸이 관찰되었다. 40 kH 초음파와 과산화수소의 동시 처리는 세포사멸에 상조적인 효과가 관찰되어 활성산소가 40 kH 초음파사멸에 관련이 있었다. 그러나 활성산소 저해제, NAC(N-acetyl-Lcysteine)는 초음파에 의한 세포사멸에 약한 영향만을 미쳤고 다른 세포사멸, 괴사억제제[글리실리진(glycyrrhizin) 또는 zVAD-fmk] 역시도 세포사멸을 완전히 억제하진 못하였다. 본 연구를 통하여 40 kH 초음파에 의한 세포사멸에는 온열효과나 활성산소만으로 사멸이 유도되지는 않는 것으로 보인다.

Keywords

References

  1. F. Ahmadi and I. McLoughlin, "A new mechanical index for gauging the human bioeffects of low frequency ultrasound," Conf. Proc. IEEE Eng. Med. Biol. Soc. 1964-1967 (2013).
  2. V. Suchkova, F. N. Siddiqi, E. L. Carstensen, D. Dalecki, S. Child, and C. W. Francis, "Enhancement of fibrinolysis with 40-kHz ultrasound," Circulation, 98, 1030-1035 (1998). https://doi.org/10.1161/01.CIR.98.10.1030
  3. W. G. Pitt, G. A. Husseini, and B. J. Staples, "Ultrasonic drug delivery - A general review," Expert Opin. Drug Deliv. 1, 37-56 (2004). https://doi.org/10.1517/17425247.1.1.37
  4. J. Voigt, M. Wendelken, V. Driver, and O. M. Alvarez, "Low-frequency ultrasound (20-40 kHz) as an adjunctive therapy for chronic wound healing: a systematic review of the literature and meta-analysis of eight randomized controlled trials," Int. J. Low Extrem Wounds, 10, 190-199 (2011). https://doi.org/10.1177/1534734611424648
  5. H. Ashush, L. A. Rozenszajn, M. Blass, M. Barda-Saad, D. Azimov, J. Radnay, D. Zipori, and U. Rosenschein, "Apoptosis induction of human myeloid leukemic cells by ultrasound exposure," Cancer Res. 60, 1014-1020 (2000).
  6. S. Brand, B. Solanki, D. B Foster, G. J. Czarnota, and M. C. Kolios, "Monitoring of cell death in epithelial cells using high frequency ultrasound spectroscopy," Ultrasound Med. Biol. 35, 482-493 (2009). https://doi.org/10.1016/j.ultrasmedbio.2008.09.014
  7. R. M. Vlad, M. C. Kolios, and G. J. Czarnota, "Ultrasound imaging of apoptosis: spectroscopic detection of DNAdamage effects at high and low frequencies," Methods Mol. Biol. 682, 165-187 (2011).
  8. B. A. Scheven, J. L. Millard, P. R. Cooper, S. C. Lea, A. D. Walmsley, and A. J. Smith, "Short-term in vitro effects of low frequency ultrasound on odontoblast-like cells," Ultrasound Med. Biol. 33, 1475-1482 (2007). https://doi.org/10.1016/j.ultrasmedbio.2007.03.010
  9. E. J. Hart and A. Henglein, "Free radical and free atom reactions in the sonolysis of aqueous iodide and formation solutions," J. Phys. Chem. 89, 4342-4347, (1985). https://doi.org/10.1021/j100266a038
  10. S. W. Ryter, H. P. Kim, A. Hoetzel, J. W. Park, K. Nakahira, X. Wang, and A. M. Choi, "Mechanisms of cell death in oxidative stress," Antioxid Redox Signal, 9, 49-89 (2007). https://doi.org/10.1089/ars.2007.9.49
  11. G. Kroemer, L. Galluzzi, P. Vandenabeele, J. Abrams, E. S. Alnemri, E. H. Baehrecke, M. V. Blagosklonny, W. S. El-Deiry, P. Golstein, D. R. Green, M. Hengartner, R. A. Knight, S. Kumar, S. A. Lipton, W. Malorni, G. Nuez, M. E. Peter, J. Tschopp, J. Yuan, M. Piacentini, B. Zhivotovsky, and G. Melino, "Classication of cell death: recommendations of the Nomenclature Committee on Cell Death 2009," Cell Death Differ. 16, 3-11 (2009). https://doi.org/10.1038/cdd.2008.150