DOI QR코드

DOI QR Code

Evaluation of Biological Activity on Hawthorn Tree (Crataegus pinnatifida) Extracts

산사나무 추출물의 생리활성 평가

  • Min, Hee-Jeong (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Young-Kyoon (Department of Forest Products & Biotechnology, Kookmin University) ;
  • Bae, Young-Soo (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
  • 민희정 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 김영균 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 배영수 (강원대학교 산림환경과학대학 산림바이오소재공학과)
  • Received : 2017.01.06
  • Accepted : 2017.02.21
  • Published : 2017.05.25

Abstract

The wood and bark of Hawthorn tree (Crataegus pinnatifida Bunge) were immersed with 70% aqueous acetone for 3 days. After filtering, the wood extracts were fractionated with n-hexane, chloroform ($CHCl_3$), n-butanol (n-BuOH) and $H_2O$, and the bark extracts were fractionated with n-hexane, $CHCl_3$, ethylacetate (EtOAc) and $H_2O$. Then antioxidative and anti-inflammatory activities were evaluated on each fraction. Antioxidative activity indicated high activity in the n-butanol soluble fraction of wood and in the EtOAc soluble fraction of bark. Especially, the EtOAc soluble fraction of bark showed much higher antioxidative value compared to the controls, buthylated hydroxytoluene (BHT) and ${\alpha}$-tocopherol. In the anti-inflammatory activity, all of the tested fractions except the $H_2O$ soluble fraction of wood showed high inhibitory effect on nitric oxide (NO) production. Based on the above results, the extracts of hawthorn tree may be applied for one of the natural biomass sources that can be used as an antioxidant and an anti-inflammatory substance.

산사나무 목질부 및 수피부를 70% acetone 수용액으로 추출하고 목질부는 n-hexane, chloroform ($CHCl_3$), n-butanol (n-BuOH) 및 수용성 추출물로 분획하였으며, 수피부는 n-hexane, chloroform, ethylacetate (EtOAc) 및 수용성으로 분획한 후, 각 추출 분획에 대하여 항산화 및 항염활성 평가를 실시하였다. 항산화 활성은 목질부에서는 n-BuOH용성이, 수피부에서는 EtOAc용성이 가장 좋은 활성을 보였으며, 특히 수피부 EtOAc용성은 대조군으로 사용된 buthylated hydroxytoluene (BHT) 및 ${\alpha}$-tocopherol에 비하여 매우 우수한 항산화 활성을 나타냈다. 항염활성은 목질부 수용성을 제외한 모든 분획물들이 nitric oxide (NO) 생성을 억제하는 효과를 보이고 있었으며, 수피부 조추출물과 수용성 분획에서 가장 우수한 NO 생성 억제효과를 나타내었다. 이와 같은 결과를 토대로 볼 때, 산사나무 추출물은 항산화제 및 항염제로 이용될 수 있는 천연 바이오매스 자원으로써의 가능성을 나타내었다.

Keywords

References

  1. Aviram, M. 2000. Review of human studies on oxidative damage and antioxidant protection related to cardiovascular diseases. Free Radical Research 33(suppl.): 85-97.
  2. Bickers, D.R., Athar, M. 2006. Oxidative stress in the pathogenesis of skin disease. Journal of Investigative Dermatolohy 126: 2565-2575. https://doi.org/10.1038/sj.jid.5700340
  3. Blois, M.S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  4. Duan, Y., Kim, M.A., Seong, J.H., Lee, Y.G., Kim, D.S., Chung, H.S., Kim, H.S. 2014. Impacts of various solvent extracts from Wild Haw (Crataegus pinnatifida Bunge) pulpy on the antioxidative activites. Journal of the East Asian Society of Dietary Life 24(3): 392-399.
  5. Hong, S.S., Hwang, J.S., Lee, S.A., Han, X.H., Hwang, J.S., Lee, K.S. 2002. Inhibitors of monoamine oxidase activity from the fruits of Crataegus pinnatifida Bunge. Korean Journal of Pharmacognosy 33(4): 285-290.
  6. Jurikova, T., Sochor, J., Rop, O., Mlcek, J., Balla, S., Szekeres, L., Adam, V., Kizek, R. 2012. Polyphenolic profile and biological activity of chinese hawthorn(Crataegus pinnatifida Bunge) fruits. Molecules 17: 14490-14509. https://doi.org/10.3390/molecules171214490
  7. Kang, I.H., Cha, J.H., Lee, S.W., Kim, H.J., Kwon, S.H., Ham, I.H., Hwang, B.S., Whang, W.K. 2005. Isolation of anti-oxidant from domestic Crataegus pinnatifida Bunge leaves. Korean Journal of Pharmacognosy 36(2): 121-128.
  8. Kao, E.S., Wang, C.J., Lin, W.L., Yin, Y.F., Wang, C.P., Tseng, T.H. 2005. Anti-inflammatory potential of flavonoid contents from dried fruit of Crataegus pinnatifida in vitro and in vivo. Journal of Agricultural Food Chemistry 53(2): 430-436. https://doi.org/10.1021/jf040231f
  9. Kim, H.K., Kim, Y.E., Do, J.R., Lee, Y.C. and Lee, B.Y. 1995. Antioxidatives activity and physiological activity of some Korean Medicinal Plants, Korean Journal of Food Science and Technology 27(1): 213-217.
  10. Kim, H.S., Duan, Y., Kim, M.A., Jang, S.H. 2014. Contents of antioxidative components from pulpy and seed in Wild Haw (Crataegus pinnatifida Bunge). Journal of Environmental Science International 23(11): 1791-1799. https://doi.org/10.5322/JESI.2014.23.11.1791
  11. Kim, Y., Lee, Y.S., Hahn, J.H., Choe, J., Kwon, H.J., Ro, J.Y., Jeoung, D. 2008. Hyaluronic acid targets CD44 and inhibits FcepsilonRI signaling involving PKCdelta, Rac1, ROS, and MAPK to exert anti-allergic effect. Molecular Immunology 45(9): 2537-2547. https://doi.org/10.1016/j.molimm.2008.01.008
  12. Lim, D.K., Choi, U., Shin, D.H. 1996. Antioxidant activity of ethanol from Korean Medicinal Plants. Korean Journal of Food Science and Technology 28(1): 83-89.
  13. Novo, E., Parola, M. 2008. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1: 1-58. https://doi.org/10.1186/1755-1536-1-1
  14. Park, S.J., Shin, E.H., Lee, J.H. 2012. Biological activities of solvent fractions from methanolic extract of Crataegi fructus. The Korean Journal of Food and Nutrition 25(4): 897-902. https://doi.org/10.9799/ksfan.2012.25.4.897
  15. Wei, W., Li, X.Y., Zhang, H.Q., Wu, S.G. 2004. Antiinflammatory and immunopharmacolohy. 1st ed. Beijing : Renminweishengchubanshe: 10-17.
  16. Williams, G.M., Iatropoulos, M.J., Whysner, J. 1999. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food and chemical Toxicology 37: 1027-1038. https://doi.org/10.1016/S0278-6915(99)00085-X