DOI QR코드

DOI QR Code

AZO-Embedded Transparent Cu Oxide Photodetector

AZO 기반의 투명 Cu Oxide 광검출기

  • Lee, Gyeong-Nam (Department of Electrical Engineering, Incheon National University) ;
  • Park, Wang-Hee (Department of Electrical Engineering, Incheon National University) ;
  • Um, Sung-Yun (Department of Electrical Engineering, Incheon National University) ;
  • Jang, Jun-min (Department of Electrical Engineering, Incheon National University) ;
  • Lim, Sol-Ma-Ru (Department of Electrical Engineering, Incheon National University) ;
  • Yun, Hyun-Chan (Department of Electrical Engineering, Incheon National University) ;
  • Hyeon, Seong-Woo (Department of Electrical Engineering, Incheon National University) ;
  • Kim, Joondong (Department of Electrical Engineering, Incheon National University)
  • Received : 2017.02.24
  • Accepted : 2017.03.24
  • Published : 2017.06.01

Abstract

An all-transparent photodetector was fabricated by structuring $Cu_2O$/ZnO/AZO/ITO on a glass substrate. The visible-range transmittance was as high as 80%, which ensures clear vision forhuman eyes. High-transparency metal conductive oxides (p-type $Cu_2O$ and n-type ZnO) were appliedto form the transparent p/n junction. The functional AZO layer was adopted to improve the transparent photodetector performance between the ZnO and ITO, improving the photoresponses because of its electrical conductivity. To clarify the AZO functionality, a comparator device was prepared without the AZO layer in the formation of $Cu_2O$/ZnO/ITO/Glass. The $Cu_2O$/ZnO/AZO/ITO device provided a rectifying ratio of 113.46, significantly better than the 9.44 of the $Cu_2O$/ZnO/ITO device. In addition, the $Cu_2O$/ZnO/AZO/ITO device's photoresponses at short wavelengths were better than those of the comparator. The functioning AZO layer provides ahigh-performing transparent Cu oxide photodetector and may suggest a route for the design of efficient photoelectric devices.

Keywords

References

  1. Y. Ievskaya, R.L.Z. Hoye, A. Sadhanala, K. P. Musselman, and J. L. MacManus-Driscoll, Sol. Energy Mat. Sol. Cells, 135, 43 (2015). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.09.018]
  2. J. Zhang, W. Que, P. Zhong, and G. Zhu, J. Nanosci. Nanotechnol., 10, 7473 (2010). [DOI: https://doi.org/10.1166/jnn.2010.2875]
  3. B. Oregan and M. Gratzel, Nature, 353, 737 (1991). [DOI: https://doi.org/10.1038/353737a0]
  4. T. Kogo, S. Hayase, T. Kaiho, and M. Taguchi, J. Electrochem. Soc., 155, K166 (2008). [DOI: https://doi.org/10.1149/1.2955722]
  5. A. L. Yang, Trans. Nonferrous Met. Soc. China, 25, 3643 (2015). [DOI: https://doi.org/10.1016/S1003-6326(15) 64005-5]
  6. Y. Tsai, C. Chiu, and M. H. Huang, J. Phys. Chem. C, 117, 24611 (2013). [DOI: https://doi.org/10.1039/c5cp05470b]
  7. Q. Zhang, K. Zhang, D. Xu, G. Yang, and H. Huang, Prog. Mater. Sci., 60, 208 (2014). [DOI: http://dx.doi.org/10.1016/j.pmatsci.2013.09.003]
  8. B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Blasing, A. Krost, S. Shokovets, C. Muller, and C. Ronning, Phys. Status Solidi., 1509, 1487 (2012). [DOI: http://dx.doi.org/10.1002/pssb.201248128]
  9. C. Y. Chiang, J. Epstein, A. Brown, J. N. Munday, J. Culver, and S. H. Ehrman, Nano Lett., 12, 6005 (2012). [DOI: http://dx.doi.org/10.1021/nl303579z]
  10. L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, and P. Kruger, J. Phys. Chem. C, 116, 10232 (2012). [DOI: http://dx.doi.org/10.1021/jp303096m]
  11. M. Heinemann, B. Eifert, and C. Heiliger, Phys. Rev. B - Condens. Matter Mater. Phys., 87, 3 (2013). [DOI: https:// doi.org/10.1103/PhysRevB.87.115111]
  12. Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, Adv. Mater., 26, 4704 (2014). [DOI: http://dx.doi.org/10.1002/adma.201401054]