Acknowledgement
Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)
References
- Abdel Aal, G.Z., Atekwana, E.A. and Atekwana, E.A. (2010), "Effect of bioclogging in porous mida on complex conductivity signatures", J. Geophys. Res.: Biogeosci., 115(G3),G00G07.
- Blauw, M., Labert, J.W.M. and Latil, M.N. (2009), "Biosealing: A method for in situ sealing of leakages", Proceeding of the International Symposium on Ground Improvment Technologies and Case Histories, ISGI09, Singapore, December, Volume 9, pp. 125-130.
-
Chang, I. and Cho, G.-C. (2012), "Strengthening of Korean residual soil with
${\beta}$ -1,3/1,6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030 -
Chang, I. and Cho, G.-C. (2014), "Geotechnical behavior of a
${\beta}$ -1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., Int. J., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633 - Chang, I., Jeon, M. and Cho, G.C. (2015), "Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries", Int. J. Polym. Sci., 9.
- Chang, I., Im, J. and Cho, G.-C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
- Cheong, F.C., Duarte, S., Lee, S.H. and Grier, D.G. (2009), "Holographic microrheology of polysaccharides from Streptococcus mutans biofilms", Rheologica Acta, 48(1), 109-115. https://doi.org/10.1007/s00397-008-0320-1
- Choppe, E., Puaud, F., Nicolai, T. and Benyahia, L. (2010), "Rheology of xanthan solutions as a function of temperature, concentration and ionic strength", Carbohyd. Polym., 82(4), 1228-1235. https://doi.org/10.1016/j.carbpol.2010.06.056
- Crocker, J.C. and Hoffman, B.D. (2007), "Multiple-particle tracking and two-point microrheology in cells", Methods Cell Biol., 83, 141-178.
- Crocker, J.C., Valentine, M.T., Weeks, E.R., Gisler, T., Kaplan, P.D., Yodh, A.G. and Weitz, D.A. (2000), "Two-point microrheology of inhomogeneous soft materials", Phys. Rev. Lett., 85(4), 888. https://doi.org/10.1103/PhysRevLett.85.888
- Cunningham, A.B., Characklis, W.G., Abedeen, F. and Crawford, D. (1991), "Influence of biofilm accumulation on porous media hydrodynamics", Environ. Sci. Technol., 25(7), 1305-1311. https://doi.org/10.1021/es00019a013
- Cunningham, A.B., Sharp, R.R., Hiebert, R. and James, G. (2003), "Subsurface biofilm barriers for the containment and remediation of contaminated groundwater", Bioremed. J., 7(3-4), 151-164. https://doi.org/10.1080/713607982
- Dasgupta, B.R. and Weitz, D. (2005), "Microrheology of cross-linked polyacrylamide networks", Phys. Rev. E, 71(2), 021504. https://doi.org/10.1103/PhysRevE.71.021504
- Dasgupta, B.R., Tee, S.-Y., Crocker, J.C., Frisken, B. and Weitz, D. (2002), "Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering", Phys. Rev. E, 65(5), 051505. https://doi.org/10.1103/PhysRevE.65.051505
- Flores-Huicochea, E., Rodriguez-Hernandez, A.I., Espinosa-Solares, T. and Tecante, A. (2013), "Sol-gel transition temperatures of high acyl gellan with monovalent and divalent cations from rheological measurements", Food Hydrocolloids, 31(2), 299-305. https://doi.org/10.1016/j.foodhyd.2012.11.007
- Lappan, R.E. and Fogler, H.S. (1994), "Leuconostoc mesenteroides growth kinetics with application to bacterial profile modification", Biotechnol. Bioeng., 43(9), 865-873. https://doi.org/10.1002/bit.260430905
- Mason, T.G. and Weitz, D. (1995), "Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids", Phys. Rev. Lett., 74(7), 1250. https://doi.org/10.1103/PhysRevLett.74.1250
- Mason, T.G., Ganesan, K., Van Zanten, J.H., Wirtz, D. and Kuo, S.C. (1997), "Particle tracking microrheology of complex fluids", Phys. Rev. Lett., 79(17), 3282. https://doi.org/10.1103/PhysRevLett.79.3282
- Mezger, T.G. (2006), The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, Vincentz Network GmbH & Co KG.
- Mitchell, J.K. and Santamarina, J.C. (2005), "Biological considerations in geotechnical engineering", J. Geotech. Geoenviron. Eng., 131(10), 1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
- Naessens, M., Cerdobbel, A., Soetaert, W. and Vandamme, E.J. (2005), "Leuconostoc dextransucrase and dextran: production, properties and applications", J. Chem. Technol. Biotechnol., 80(8), 845-860. https://doi.org/10.1002/jctb.1322
- Noh, D.H., Ajo-Franklin, J.B., Kwon, T.H. and Muhunthan, B. (2016), "P and S wave responses of bacterial biopolymer formation in unconsolidated porous media", J. Geophys. Res.: Biogeosci., 121(4), 1158-1177.
- Padmanabhan, P.A. and Kim, D.-S. (2002), "Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523", Carbohyd. Res., 337(17), 1529-1533. https://doi.org/10.1016/S0008-6215(02)00214-8
- Padmanabhan, P.A., Kim, D.S., Pak, D. and Sim, S.J. (2003), "Rheology and gelation of water-insoluble dextran from Leuconostoc mesenteroides NRRL B-523", Carbohyd. Polym., 53(4), 459-468. https://doi.org/10.1016/S0144-8617(03)00140-1
- Pintelon, T.R., Picioreanu, C., van Loosdrecht, M. and Johns, M.L. (2012), "The effect of biofilm permeability on bio-clogging of porous media", Biotechnol. Bioeng., 109(4), 1031-1042. https://doi.org/10.1002/bit.24381
- Rogers, S., Van Der Walle, C. and Waigh, T. (2008), "Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa", Langmuir, 24(23), 13549-13555. https://doi.org/10.1021/la802442d
- Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., Int. J., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649
- Stewart, T.L. and Fogler, H.S. (2001), "Biomass plug development and propagation in porous media", Biotechnol. Bioeng., 72(3), 353-363. https://doi.org/10.1002/1097-0290(20010205)72:3<353::AID-BIT13>3.0.CO;2-U
- Swindells, J.F. (1958), "Viscosities of sucrose solutions at various temperatures: Tables of recalculated values", Vol. 440; For sale by the Supt. of Docs., USGPO.
- Taylor, S.W. and Jaffe, P.R. (1990), "Biofilm growth and the related changes in the physical properties of a porous medium: 1.Experimental Investigation", Water Resour. Res., 28(5), 1481-1482. https://doi.org/10.1029/92WR00246
- Wilham, C.A., Alexander, B.H. and Jeanes, A. (1955), "Heterogeneity in dextran preparations", Arch. Biochem. Biophys., 59(1), 61-75. https://doi.org/10.1016/0003-9861(55)90463-X
- Wirtz, D. (2009), "Particle-tracking microrheology of living cells: Principles and applications", Annu. Rev. Biophys., 38, 301-326. https://doi.org/10.1146/annurev.biophys.050708.133724
- Yasodian, S.E., Dutta, R.K., Mathew, L., Anima, T.M. and Seena, S.B. (2012), "Effect of microorganism on engineering properties of cohesive soils", Geomech. Eng., Int. J., 4(2), 135-150. https://doi.org/10.12989/gae.2012.4.2.135
- Zurera-Cosano, G., Garcia-Gimeno, R., Rodriguez-Perez, R. and Hervas-Martinez, C. (2006), "Performance of response surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions", Food Control, 17(6), 429-438. https://doi.org/10.1016/j.foodcont.2005.02.003
Cited by
- Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions vol.17, pp.5, 2017, https://doi.org/10.12989/gae.2019.17.5.497
- Evaluation of Injection capabilities of a biopolymer-based grout material vol.25, pp.1, 2017, https://doi.org/10.12989/gae.2021.25.1.031