• KHAN, MOHSIN (Department of Mathematics, Abdul Wali Khan University)
  • Received : 2016.12.06
  • Accepted : 2017.03.22
  • Published : 2017.05.30


Soft sets are fantastic mathematical tools to handle imprecise and uncertain information in complicated situations. In this paper, we defined the hybrid structure which is the combination of soft set and complex number representation of intuitionistic fuzzy set. We defined basic set theoretic operations such as complement, union, intersection, restricted union, restricted intersection etc. for this hybrid structure. Moreover, we developed this theory to establish some more set theoretic operations like Disjunctive sum, difference, product, conjugate etc.



  1. B. Ahmad and A. Kharal, "On Fuzzy Soft Sets", Advances in Fuzzy Systems, 2009 (2009).
  2. A. Alkouri and A. Salleh, "Complex intuitionistic fuzzy sets," in International Conference on Fundamental and Applied Sciences, AIP Conference Proceedings 1482 (2012), 464-470.
  3. A. Alkouri and A.R. Salleh, Some operations on complex Atanassov's intuitionistic fuzzy sets, AIP Conference Proceedings 1571, 987 (2013).
  4. K.T. Atanassov, "Intuitionistic fuzzy sets," Fuzzy Sets and Systems 20 (1986), 87-96.
  5. K.T. Atanassov, Intuitionistic fuzzy sets, Theory and applications of Studies in Fuzziness and Soft Computing, Physica, Heidelberg, Germany 35, 1999.
  6. K.V. Babitha and Sunil Jacob John, Generalized Intuitionistic Fuzzy Soft sets and its applications, Gen. Math. Notes 7 (2011), 1-14.
  7. T.M. Basu, N.K. Mahapetra, S.K. Mondal, On Some New Operations in Fuzzy soft Set and Intuitionistic Fuzzy soft Set Theory, Department of Applied Mathematics with Oceanology and computer Programming, Vidyasagar University, Midnapure -721102, W.B., India.
  8. M. Bashir, A.R. Salleh, and S. Alkhazaleh, Possibility Intuitionistic Fuzzy Soft Set, Advances in Decision Sciences 2012 (2012), Article ID 404325, 24 pages, doi:10.1155/2012/404325.
  9. M. Bora, T. Jyoti Neog, D. Kumar Sut, Some New Operations of Intuitionistic Fuzzy Soft Set, International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, 2 (2012)..
  10. S. Broumi, F. Smarandache, Intuitionistic Fuzzy Soft Expert Sets and its Application in Decision Making, Journal of New Theory, Number 1 (2015), 89-105.
  11. S. Broumi, F. Smarandache, Mapping on Intuitionistic Fuzzy Soft Expert Sets and its Application in Decision Making, Journal of New Results in science, 9 (2015), 1-10.
  12. S. Broumi, Q-Intuitionistic Fuzzy Soft Sets, Journal of New Theory 5 (2015), 80-91.
  13. M.D. Cock, C. Cornelis and E.E. Kerre, "Intuitionistic Fuzzy Relational Images," Studies in Computational Intelligence 2 (2005), 129-145.
  14. S. Coupland, R. John, New geometric inference techniques for type-2 fuzzy sets, International Journal of Approximate Reasoning 49 (2008), 198-211.
  15. S.P. De, R.P. Krishna, A new approach to mining fuzzy databases using nearest neighb or classi cation by exploiting attribute hierarchies, Int J. Intell Syst 19 (2004), 1277-1290.
  16. G. Deschrijive and E.E. Kerre, "On the Position of Intuitionistic Fuzzy Set Theory in the Framework of Theories Modelling Imprecision," Information Sciences 177 ( 2007), 1860-1866.
  17. B. Dinda and T.K. Samanta, Relations on Intuitionistic Fuzzy Soft Sets, Gen. Math. Notes, l (2010), 74-83.
  18. D. Drianko, H. Hellendorf, M. Reinfrank, An introduction to fuzzy control, Berlin: Springer-Verlag, 1993.
  19. A. Kandel, Fuzzy mathematical techniques with applications, New York: Addison Wesley, 1987.
  20. T. Kumar and R.K. Bajaj, On Complex Intuitionistic Fuzzy Soft sets with Distance Mea- sure and Entropies, Hindawi Publishing Corporation, Journal of Mathematics 2014 (2014), Article ID 972198, 12 pages.
  21. P.K. Maji, R. Biswas, A. Roy, Soft set theory, Department of Mathematics, Indian Institute of Technology, Kharagpur - 721302, West Bengal, India.
  22. P.K. Maji, R. Biswas, A. Roy, Fuzzy Soft sets, Journal of Fuzzy Mathematics 9 (2001), 589-602.
  23. P.K. Maji, R. Biswas, A.R. Roy, Intuitionistic fuzzy soft sets, The journal of fuzzy mathematics 9 ( 2001), 677-692.
  24. J.M. Mendel, Uncertainty, Fuzzy logic, and signal processing, Signal Processing 80 (2000), 913-933.
  25. A. Mhalla, N. Jerbi, S.C. Dutilleul, E. Craye, M. Benrejeb, Fuzzy Filtering of Sensors Signals in Manufacturing Systems with Time, Constraints, International Journal of Computers Communications & Control 5 (2010), 362-374.
  26. D. Molodtsov, Soft set theory, First result, Computing center of the Russian Academy of Science 40 Vavilova Street, Moscow 117967, Russia.
  27. T.J. Neog, D.K. Sut, "On Union and Intersection of Fuzzy Soft Sets", Int. J. Comp. Tech. Appl. 2 , 1160-1176.
  28. D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Transaction on Fuzzy Systems 10 (2002), 171-186.
  29. D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE Transaction on Fuzzy Systems 11 (2003), 450-461.
  30. E. Szmidt, J. Kacprzyk, Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets, Note on IFS 10 (2004), 61-69.
  31. L.K. Vlachos and G.D. Sergiadis, "Intuitionistic Fuzzy Information - Applications to Pat- tern Recognition," Pattern Recognition Letters 28 (2007), 197- 206.
  32. N. Yaqoob, M. Akram and M. Aslam, Intuitionistic Fuzzy Soft Groups Induced by (t, s)-norm, Indian Journal of Science and Technology, 2010.
  33. L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
  34. L.A Zadeh, The concept of a linguistic variable and its application to approximate reasoning- Part I, Information Sciences 7 (1975), 199-249.
  35. L.A. Zadeh, Fuzzy algorithms, Information and Control 12 (1968), 94-102.
  36. J. Zhao, Y. Li and Y. Yin, Intuitionistic Fuzzy Soft Semigroup, Mathematical Aeterna 1 (2011).

Cited by

  1. Multi-Attribute Decision-Support System Based on Aggregations of Interval-Valued Complex Neutrosophic Hypersoft Set vol.2021, pp.None, 2021,