DOI QR코드

DOI QR Code

뒷굽이 있는 케이슨 안벽에 작용하는 토압에 대한 연구

Study on Earth Pressure Acting Against Caisson Structure with the Heel

  • 유건선 (한라대학교 토목공학과)
  • Yoo, Kun-Sun (Dept. of Civil Engineering, Halla University)
  • 투고 : 2017.02.08
  • 심사 : 2017.03.17
  • 발행 : 2017.04.30

초록

본 연구에서는 케이슨 안벽의 뒷굽이 주동토압에 미치는 영향을 조사하였다. 한계해석법을 사용하여 뒷굽의 길이에 따라 벽면마찰력이 뒷굽 상부에서 발생하는 활동면의 경사각에 미치는 영향을 분석하였다. 분석결과 뒷굽의 길이가 짧을수록 내측 활동면의 경사각은 증가하나, 외측 활동면의 경사각은 일정하였다. 실제 케이슨 안벽에서 발생하는 파괴면에 작용하는 토압과 동일한 토압을 갖는 뒷굽 끝에서의 가상의 연직배면에 작용하는 토압에 대하여 뒷굽의 상대 길이-뒤채움 토사의 내부마찰각-벽면마찰각-가상의 연직배면에 작용하는 배면마찰각 등의 상관관계를 구하였다. 뒷굽이 짧을수록 케이슨 안벽에 작용하는 토압이 Rankine 토압보다는 작아지나 뒷굽의 길이를 고려하지 않은 Coulomb 토압보다는 항상 크게 나타났다.

In this study, the effect of caisson heel on the active earth pressure is investigated. Using limit analysis method, inclinations of slip surface developed above the heel with different lengths are analyzed. The shorter the heel length, the larger those of inside slip surface, however those of outside slip surface are not changed. According to the relative heel length, relationships of internal friction angle of backfill material - wall friction angle between caisson structure and backfill - friction angle acting on virtual section at the end of heel are presented. Earth pressures acting against caisson structure with relatively short heel are smaller than Rankine earth pressure but always greater than Coulomb earth pressure which does not consider the heel length.

키워드

참고문헌

  1. Barghouthi, A.F. (1990). Active earth pressure on walls with base projection. Jornal of Geotechnical Engineering, 116(10), 1570-1575. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:10(1570)
  2. Chen, W.F. (1975). Limit analysis and soil plasticity. Developments in geotechnical engineering, vio. 7. Amsterdam, The Netherlands: Elsevier.
  3. Coulomb, C.A. (1776). Essai sur une Application des Regles des Maximis et Minimis a quelques Problems de Statique Relatifs a l'Architecture (An attempt to apply the rules of maxima and minima to several problems of stability related tp architecture). Mem Acad. Roy. des Sciences, Paris, 7, 343-382.
  4. Jaky, J. (1938). Die Klassische Erddrucktherie mit besonderer Rucksicht auf die Stutzwandbewegung, Abhandl. Intern. Verein. Bruckenbau u. Hochbau (Trans. Intern. Assoc. Bridge and Structural Eng.), Vol. 5.
  5. Karman, T.V. (1926). Uber elastische Grenzzustande, Proc. Second Congr. Applied Mechanics, Zurich.
  6. Kim, B.I., Jeong, Y.J., Kim, D.H., Lee, C.H. and Han, S.J. (2014). The calculation and design method of active earth pressure with type of gravity structures. Journal of the Korean Geotechnical Society, 30(4), 47-63. https://doi.org/10.7843/KGS.2014.30.4.47
  7. Ministry of Oceans and Fisheries (2014). Harbor and Fishing Port Design Code (in Korean).
  8. Ohde, J. (1938). Zur Theorie des Erdduckes unter besonderer Berucksichtigung der Erddruck Verteilung. Die Bautechnik, Vol. 16.
  9. Smith, C.C. and Gilbert, M. (2007). Application of discontinuity layout optimization to plane plasticity problems. Proc. Royal Society A, 463(2086), 2461-2484. https://doi.org/10.1098/rspa.2006.1788
  10. Teng, W.C. (1962). Foundation design, Prentice-Hall, Inc.
  11. Terzaghi, K. (1943). Theoretical Soil Mechanics, JohnWiley & Sons, Inc.