References
- R. J. Adler, R. E. Feldman, and M. S. Taqqu, A Practical Guide to Heavy Tailed Data, Birkhauser, Boston, 1998.
- Y. Davydov, I. Molchanov, and S. Zuyev, Strictly stable distributions on convex cones, Electron. J. Probab. 13 (2008), no. 11, 259-321. https://doi.org/10.1214/EJP.v13-487
- Y. Davydov, I. Molchanov, and S. Zuyev, Stability for random measures, point processes and discrete semigroups, Bernoulli 17 (2011), no. 3, 1015-1043. https://doi.org/10.3150/10-BEJ301
- J. L. Geluk and L. de Haan, Stable probability distributions and their domains of attraction: A direct approach, Probab. Math. Statist. 20 (2000), no. 1, 169-188.
- B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sum of Independent Random Variables Addison-Wesley, 1954.
- H. Hult and F. Lindskog, Regular variation for measures on metric spaces, Publ. Inst. Math. 80(94) (2006), 121-140. https://doi.org/10.2298/PIM0694121H
- R. Jajte, On stable distributions in Hilbert space, Studia Math. 30 (1968), 63-71. https://doi.org/10.4064/sm-30-1-63-71
- O. Kallenberg, Random Measures, 3rd Edition, Akademie-Verlag, Berlin, 1983.
- A. Kumar and V. Mandrenkar, Stable probability measures on Banach spaces, Studia Math. 42 (1972), 133-144. https://doi.org/10.4064/sm-42-2-133-144
- P. Levy, Theorie de l'addition des variables aleatoires, Gauthier-Villars, Paris, 1937.
- J. McCulloch, Financial applications of stable distributions, Handbook of Statistics 14, 393-425, ed. G. Maddala and C. Rao, Elsevier Science Publishers, North-Holland, 1996.
- Thu Nguyen Van, Stable random measures, Acta Math. Vietnam. 4 (1979), no. 1, 71-75.
- K. J. Palmer, M. S. Ridout, and B. J. T. Morgan, Modelling cell generation times using the tempered stable distribution, J. Roy. Statist. Soc. Ser. C 57 (2008), no. 4, 379-397. https://doi.org/10.1111/j.1467-9876.2008.00625.x
- S. I. Resnik, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York 2007.
- G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian random processes, Chapman and Hall, London 1994.
- K. Sato, Strictly operator-stable distributions, J. Multivariate Anal. 22 (1987), no. 2, 278-295. https://doi.org/10.1016/0047-259X(87)90091-1
- V. M. Zolotarev, One-dimensional stable distributions, Translations of Mathematical Monographs, 65. American Mathematical Society, 1986.