DOI QR코드

DOI QR Code

Spatio-Temporal Monitoring of Soil CO2 Fluxes and Concentrations after Artificial CO2 Release

인위적 CO2 누출에 따른 토양 CO2 플럭스와 농도의 시공간적 모니터링

  • 김현준 (고려대학교 BK21 Plus 에코리더양성사업단) ;
  • 한승현 (고려대학교 대학원 환경생태공학과) ;
  • 김성준 (고려대학교 대학원 환경생태공학과) ;
  • 윤현민 (고려대학교 대학원 환경생태공학과) ;
  • 전성천 ((주)지오그린21) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Received : 2016.11.25
  • Accepted : 2017.03.03
  • Published : 2017.04.30

Abstract

CCS (Carbon Capture and Storage) is a technical process to capture $CO_2$ from industrial and energy-based sources, to transfer and sequestrate impressed $CO_2$ in geological formations, oceans, or mineral carbonates. However, potential $CO_2$ leakage exists and causes environmental problems. Thus, this study was conducted to analyze the spatial and temporal variations of $CO_2$ fluxes and concentrations after artificial $CO_2$ release. The Environmental Impact Evaluation Test Facility (EIT) was built in Eumseong, Korea in 2015. Approximately 34kg $CO_2$ /day/zone were injected at Zones 2, 3, and 4 among the total of 5 zones from October 26 to 30, 2015. $CO_2$ fluxes were measured every 30 minutes at the surface at 0m, 1.5m, 2.5m, and 10m from the $CO_2$ releasing well using LI-8100A until November 13, 2015, and $CO_2$ concentrations were measured once a day at 15cm, 30cm, and 60cm depths at every 0m, 1.5m, 2.5m, 5m, and 10m from the well using GA5000 until November 28, 2015. $CO_2$ flux at 0m from the well started increasing on the fifth day after $CO_2$ release started, and continued to increase until November 13 even though the artificial $CO_2$ release stopped. $CO_2$ fluxes measured at 2.5m, 5.0m, and 10m from the well were not significantly different with each other. On the other hand, soil $CO_2$ concentration was shown as 38.4% at 60cm depth at 0m from the well in Zone 3 on the next day after $CO_2$ release started. Soil $CO_2$ was horizontally spreaded overtime, and detected up to 5m away from the well in all zones until $CO_2$ release stopped. Also, soil $CO_2$ concentrations at 30cm and 60cm depths at 0m from the well were measured similarly as $50.6{\pm}25.4%$ and $55.3{\pm}25.6%$, respectively, followed by 30cm depth ($31.3{\pm}17.2%$) which was significantly lower than those measured at the other depths on the final day of $CO_2$ release period. Soil $CO_2$ concentrations at all depths in all zones were gradually decreased for about 1 month after $CO_2$ release stopped, but still higher than those of the first day after $CO_2$ release stared. In conclusion, the closer the distance from the well and the deeper the depth, the higher $CO_2$ fluxes and concentrations occurred. Also, long-term monitoring should be required because the leaked $CO_2$ gas can remains in the soil for a long time even if the leakage stopped.

CCS (Carbon Capture and Storage)는 공업용 자원이나 에너지 기반의 자원으로부터 $CO_2$를 포집하여 고갈 유 가스전, 석탄층, 바다, 심부 대염수층 등에 저장하는 기술이다. 그러나 잠재적인 $CO_2$ 누출은 환경문제를 유발할 수 있기 때문에 저심도에서 $CO_2$의 누출을 검출할 수 있는 모니터링 기술이 필요하다. 따라서 본 연구는 인위적인 $CO_2$ 누출실험을 통해 지표면 부근에서 토양 $CO_2$가 확산되는 경향을 분석하고자 실시하였다. 시험대상지 "The Environmental Impact Evaluation Test Facility (EIT)"는 2015년에 충북 음성군 대소면에 설치되었다. 총 5개의 구역 중 2, 3, 4구역에서 약 34 kg $CO_2$/day/zone의 $CO_2$를 2015년 10월 26일부터 30일까지 주입하였다. $CO_2$ 플럭스는 LI-8100A를 이용하여 3구역의 누출구로부터 0m, 1.5m, 2.5m, 10m 지점의 지표면에서 11월 13일까지 매 30분마다 측정하였으며, $CO_2$ 농도는 GA5000을 이용하여 3개 구역의 누출구로부터 0m, 2.5m, 5.0m, 10m 지점의 15cm, 30cm, 60cm 깊이에서 11월 28일까지 1일 1회 측정하였다. $CO_2$ 플럭스는 누출시작 5일 후에 누출구로부터 0m 지점에서 확인되었으며 누출이 종료된 이후에도 11월 13일까지 계속 증가하였다. 2.5m, 5.0m, 10m 지점의 $CO_2$플럭스 간에는 유의한 차이를 보이지 않았다. 한편, $CO_2$ 농도는 인위적인 $CO_2$ 누출이후 둘째 날에 3구역의 누출구로부터 0m 지점의 60cm 깊이에서 38.4%로 측정되었다. $CO_2$ 농도는 시간이 지날수록 수평적으로 더 넓게 확산되었으나, $CO_2$ 누출을 종료할 때까지 모든 구역에서 누출구로부터 5m 지점까지만 검출되었다. 또한, $CO_2$ 누출 마지막 날에 30cm와 60cm 깊이에서 $CO_2$ 농도는 각각 $50.6{\pm}25.4%$$55.3{\pm}25.6%$로 유사하게 측정되었으나, 15cm 깊이에서는 $31.3{\pm}17.2%$로 다른 지점에 비해 유의하게 낮은 것으로 나타났다. $CO_2$ 누출을 종료한 후 모든 구역의 모든 깊이에서 $CO_2$ 농도는 약 1달 동안 서서히 감소하였지만 누출 직후보다는 여전히 높았다. 결론적으로 누출구로부터 가깝고 깊이가 깊을수록 $CO_2$ 플럭스와 농도는 높은 것으로 나타났으며, 누출이 된 $CO_2$ 기체는 누출이 멈추더라도 장기간 토양 내에 잔류할 수 있기 때문에 장기 모니터링이 필요할 것으로 판단된다.

Keywords

References

  1. Clements WE, Wilkening MH. 1974. Atmospheric pressure effects on $Rn^{222}$ transport across the earth-air interface. Journal of Geophysical Research 79: 5025-5029. https://doi.org/10.1029/JC079i033p05025
  2. Cohen LR, Raz-Yaseef N, Curtis JB, Young JM, Rahn TA, Wilson CJ, Wullschleger SD, Newman BD. 2015. Measuring diurnal cycles of evapotranspiration in the Arctic with an automated chamber system. Ecohydrology 8: 652-659. https://doi.org/10.1002/eco.1532
  3. Cortis A, Oldenburg CM, Benson SM. 2008. The role of optimality in characterizing $CO_2$ seepage from geologic carbon sequestration sites. International Journal of Greenhouse Gas Control 2: 640-652. https://doi.org/10.1016/j.ijggc.2008.04.008
  4. Eumseong Country. 2015. Eumseong Statistical Yearbook.
  5. Global CCS Institute: Large scale CCS projects [Internet]. Australia. Available from: http://www.globalccsinstitute.com.
  6. He W, Moonis M, Chung H, Yoo G. 2016. Effects of high soil $CO_2$ concentrations on seed germination and soil microbial activities. International Journal of Greenhouse Gas Control 53: 117-126. https://doi.org/10.1016/j.ijggc.2016.07.023
  7. Houghton JT, Jenkins GJ, Ephraums JJ. 1990. Climate change: The IPCC scientific assessment. Cambridge University Press.
  8. Humphries SD, Nehrir AR, Keith CJ, Repasky KS, Dobeck L, Carlsten L, Spangler L. 2008. Testing carbon sequestration site monitoring instruments using a controlled carbon dioxide release facility. Applied Optics 47(4): 548-555. https://doi.org/10.1364/AO.47.000548
  9. Hwang JH, Kang SG, Park YG. 2010. Technical review on risk assessment methodology for carbon marine geological storage systems. Journal of the Korean Society for Marine Environmental Engineering 13(2): 121-125.
  10. Intergovernmental Panel on Climate Change (IPCC). 2005. IPCC special report on carbon dioxide capture and storage. Cambridge University Press, New York.
  11. Intergovernmental Panel on Climate Change (IPCC). 2013. Summary for policy makers. In: climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
  12. Jones DG, Barkwith AKAP, Hannis S, Lister TR, Gal F, Graziani S, Beaubien SE, Widory D. 2014. Monitoring of near surface gas seepage from a shallow infection experiment at the $CO_2$ Field Lab, Norway. International Journal of Greenhouse Gas Control 28: 300-317. https://doi.org/10.1016/j.ijggc.2014.06.021
  13. Kang K, Huh C, Kang SG. 2015. A numerical study on the $CO_2$ leakage through the fault during offshore carbon sequestration. Journal of the Korean Society for Marine Environment and Energy 18(2): 94-101. [Korean Literature] https://doi.org/10.7846/JKOSMEE.2015.18.2.94
  14. Kim HJ. 2011. Estimating absorption of carbon dioxide and developing allometric equation for Quercus acuta. Master thesis. Chonbuk National University, Jeonju. [Korean Literature]
  15. Klusman RW. 2003. Evaluation of leakage potential from a carbon dioxide EOR/wequestration project. Energy Conversion and Management 44: 1921-1940. https://doi.org/10.1016/S0196-8904(02)00226-1
  16. Klusman RW. 2011. Comparison of surface and near-surface geochemical methods for detection of gas microseepage from carbon dioxide sequestration. International Journal of Greenhouse Gas Control 5(6):1369-1392. https://doi.org/10.1016/j.ijggc.2011.07.014
  17. Lee SI, Lee SK, Hwang JH. 2009. Fault tree analysis for risk assessment of $CO_2$ leakage from geologic storage. Journal of Environmental Impact Assessment 18(6):359-366. [Korean Literature]
  18. Lee SI, Sung J, Hwang JH. 2012. Public awareness and acceptance of carbon dioxide capture and storage. Journal of Environmental Impact Assessment 21(3):469-481. [Korean Literature] https://doi.org/10.14249/EIA.2012.21.3.469
  19. Lewicki JL, Hilley GE, Dobeck L, Spangler L. 2010. Dynamics of $CO_2$ fluxes and concentrations during a shallow subsurface $CO_2$ release. Environmental Earth Sciences 60(2): 285-297. https://doi.org/10.1007/s12665-009-0396-7
  20. Lewicki JL, Hilley GE, Fischer ML. Pana L, Oldenburg CM, Dobeck L, Spangler L. 2009. Detection of $CO_2$ leakage by eddy covariance during the ZERT project's $CO_2$ release experiments. Energy Procedia 1(1):2301-2306. https://doi.org/10.1016/j.egypro.2009.01.299
  21. Lewicki JL, Hilley GE, Oldenburg CM. 2005. An improved strategy to detect $CO_2$ leakage for verification of geologic carbon sequestration. Geophysical Research Letters 32: L19403. doi: 10.1029/2005GL024281.
  22. Mahesh P, Sharma N, Dadhwal VK, Rao PVN, Apparao BV, Ghosh AK, Mallikarjun K, Ali MM. 2014. Impact of land-sea breeze and rainfall on $CO_2$ variations at a coastal station. Earth Science and Climatic Change 5(6): 201. doi: 10.4172/2157-7617.1000201.
  23. Moonis M, He W, Kim Y, Yoo G. 2016. Effect of potential $CO_2$ leakage from carbon capture and storage sites on soil and leachate chemistry. KSCE Journal of Civil Engineering doi:10.1007/s12205-016-1867-5.
  24. Nilson RH, Peterson EW, Lie KH, Burkhard NR, Hears JR. 1991. Atmospheric pumping: a mechaanism causing vertical transport of contaminated gases through fractured permeable media. Journal of Geophysical Research 96: 21933-21948. https://doi.org/10.1029/91JB01836
  25. Schloemer S, Furche M, Dumke I, Poggenburg J, Bahr A, Seeger C, Vidal A, Faber E. 2013. A review of continuous soil gas monitoring related to CCS - Technical advances and lessons learned. Applied Geochemistry 30: 148-160. https://doi.org/10.1016/j.apgeochem.2012.08.002
  26. Strazisar BR, Wells AW, Diehl JR, Hammack RW, Veloski GA. 2009. Nearsurface monitoring for the ZERT shallow $CO_2$ injection project. International Journal of Greenhouse Gas Control 3(6): 736-744. https://doi.org/10.1016/j.ijggc.2009.07.005
  27. Suh S, Choi E, Jeong H, Lee J, Kim G, Lee J, Sho K. 2015. The study on carbon budget assessment in pear orchard. Korean Journal of Environmental Biology 33(3):345-351. [Korean Literature] https://doi.org/10.11626/KJEB.2015.33.3.345
  28. Takle ES, Massman WJ, Brandlec JR, Schmidt RA, Zhou X, Litvina IV, Garcia R, Doyle G, Rice CW. 2004. Influence of highfrequency ambient pressure pumping on carbon dioxide efflux from soil. Agricultural and Forest Meteorology 124:193-206. https://doi.org/10.1016/j.agrformet.2004.01.014
  29. Wong TT, Agar JG. 2009. Development of a technically defensible soil gas sampling strategy for vapour intrusion assessments. Canadian Geotechnical Journal 46: 102-113. https://doi.org/10.1139/T08-107
  30. Zhang LH, Chen YN, Zhao RF, Li WH. 2010. Significance of temperature and soil water content on soil respiration in three ecosystems in Northwest China. Journal of Arid Environments 74: 1200-1211. https://doi.org/10.1016/j.jaridenv.2010.05.031

Cited by

  1. Real‐time monitoring of carbon dioxide emissions from a shallow carbon dioxide release experiment vol.19, pp.1, 2017, https://doi.org/10.1002/vzj2.20051