DOI QR코드

DOI QR Code

전기 임피던스 단층촬영법에서 TSVD 기반의 역문제 해법의 개발

Development of Inverse Solver based on TSVD in Electrical Impedance Tomography

  • 김봉석 (한국승강기대학교 승강기공학부) ;
  • 김창일 (한국승강기대학교 승강기공학부) ;
  • 김경연 (제주대학교 전자공학과)
  • Kim, Bong Seok (Faculty of Lift Engineering, Korea Lift College) ;
  • Kim, Chang Il (Faculty of Lift Engineering, Korea Lift College) ;
  • Kim, Kyung Youn (Department of Electronic Engineering, Jeju National University)
  • 투고 : 2016.11.16
  • 심사 : 2017.03.09
  • 발행 : 2017.04.25

초록

전기 임피던스 단층촬영 기법은 도메인의 표면에 부착된 전극들을 통해 주입된 전류와 측정된 전압 데이터를 기반으로, 미지의 도전율 분포를 복원하는 비파괴 기술이다. 이 논문에서는 전기 임피던스 단층촬영법에서 일반적 Tikhonov 조정을 갖는 역문제를 풀고 도전율 분포를 복원하기 위해 절단된 특이값 분해 기반의 역문제 해법을 제안하였다. 역문제 계산시간을 줄이기 위해 일반 조정행렬을 역행렬 항목에서 분리시키고 절단된 특이값 분해 방법을 적용하였다. 제안한 방법의 성능을 검증하기 위해 모의실험과 팬텀실험을 수행하고 복원결과를 비교하였다.

Electrical impedance tomography is a nondestructive imaging technique to reconstruct unknown conductivity distribution based on applied current data and measured voltage data through an array of electrodes attached on the periphery of a domain. In this paper, an inverse method based on truncated singular value decomposition is proposed to solve the inverse problem with the generalized Tikhonov regularization and to reconstruct the conductivity distribution. In order to reduce the inverse computational time, truncated singular value decomposition is applied to the inverse term after the generalized regularization matrix is taken out from the inverse matrix term. Numerical experiments and phantom experiments have been performed to verify the performance of the proposed method.

키워드

참고문헌

  1. F. A. Holand and R. Bragg, Fluid Flow for Chemical Engineers, Edward Arnold Publisher, 1995.
  2. K. A. Shollenberger, J. R. Torczynski, D. R. Adkins, T. J. O'hern and N. B. Jackson., "Gammadensitometry tomography of gas holdup spatial distribution and industrial-scale bubble columns," Chem. Eng. Sci., Vol. 52, pp. 2037-2048, July 1997. https://doi.org/10.1016/S0009-2509(97)00032-8
  3. L. Xu, Y. Han, L. A. Xu, J. Yang, "Application of ultrasonic tomography to monitoring gas/ liquid flow," Chem. Eng. Sci., Vol. 52, pp. 2171- 2183, July 1997. https://doi.org/10.1016/S0009-2509(97)00043-2
  4. W. Q. Yang and L. Peng, "Image reconstruction algorithms for electrical capacitance tomography," Meas. Sci. Technol., Vol. 14, pp. R1-13, January 2003. https://doi.org/10.1088/0957-0233/14/1/201
  5. O. C. Jones, J. T. Lin, L. Ovacik and H. Shu, "Impedance imaging relative to gas-liquid systems," Nucl. Eng. Des., Vol. 141, pp. 159-176, June 1993. https://doi.org/10.1016/0029-5493(93)90100-N
  6. J. G. Webster, Electrical Impedance Tomography, Adam Hilger, 1990.
  7. D. S. Holder, Electrical Impedance Tomography: Methods, History and Applications, IOP Publishing, 2005.
  8. M. Vauhkonen, Electrical Impedance Tomography and Prior Information, Ph.D. Thesis, University of Kuopio, Finland, 1997.
  9. B. S. Kim, A. K. Khambampati, S. Kim and K. Y. Kim, "Image reconstruction with an adaptive threshold technique in electrical resistance tomography," Meas. Sci. Technol., Vol. 22, 104009, October 2011. https://doi.org/10.1088/0957-0233/22/10/104009
  10. T. J. Yorkey, J. G. Webster and W. J. Tompkins, "Comparing reconstruction algorithms for electrical impedance tomography," IEEE Trans. Biomed. Eng., Vol. 34, pp. 843-852, November 1987.
  11. D. C. Barber and B. H. Brown, "Progress in electrical impedance tomography," ed. D. Colton, R. Ewing and W. Rundell, Inverse Problems in Partial Differential Equations, SIAM, Chapter 10, pp. 151-164, 1990.
  12. M. Cheney, D. Isaacson, J. C. Newell, S. Simske and J. Goble, "NOSER: An algorithm for solving the inverse conductivity problem," Int. J. Imaging Syst. Technol., Vol. 2, pp. 66-75, June 1990. https://doi.org/10.1002/ima.1850020203
  13. J. L. Mueller, D. Isaacson and J. C. Newell, "A reconstruction algorithm for electrical impedance tomography data collected on rectangular electrode arrays," IEEE Trans. Biomed. Eng., Vol. 46, pp. 1379-1386, November 1999. https://doi.org/10.1109/10.797998
  14. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Inverse Problems, SIAM, 1998.
  15. B. S. Kim, A. K. Khambampati, S. I. Kang and K. Y. Kim, "Conductivity image reconstruction based on singular value decomposition method in electrical impedance tomography," 31st International Technical Conference on Circuits/ Systems, Computers and Communications, Okinawa, Japan, 10-13 July 2016.
  16. M. Vauhkonen, W. R. B. Lionheart, L. M. Heikkinen, P. J. Vauhkonen and J. P. Kaipio, "A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images," Physiol. Meas., Vol. 22, pp. 107-111, February 2001. https://doi.org/10.1088/0967-3334/22/1/314
  17. P. C. Hansen and D. P. O'Leary, "The use of the L-curve in the regularization of discrete ill-posed problems," SIAM J. Sci. Comput., Vol. 14, pp. 1487-1503, November 1993. https://doi.org/10.1137/0914086