References
- Bemis, B., Bain, L. J. and Higgins, J. J. (1972). Estimation and hypothesis testing for the parameters of a bivariate exponential distribution, Journal of the American Statistical Association, 67, 927-929. https://doi.org/10.1080/01621459.1972.10481320
- Bennette, S. (1983). Log-logistic regression models for survival data, Applied Statistics, 32, 165-171. https://doi.org/10.2307/2347295
- Block, H. and Basu, A. P. (1974). A continuous bivariate exponential extension, Journal of the American Statistical Association, 69, 1031-1037.
- Calabria, R. and Pulcini, G. (1994). Bayesian 2-sample prediction for the inverse Weibull distribution, Communications in Statistics: Theory and Methods, 23, 1811-1824. https://doi.org/10.1080/03610929408831356
- Cohen, A. C. (1965). Maximum likelihood estimation in the Weibull distribution based on complete and censored samples. Technometrics, 7, 579-588. https://doi.org/10.1080/00401706.1965.10490300
- Dagum, C. (1960). A model of Net Wealth Distribution Specified for Negative, Null and Positive Wealth. A Case of Study: Italy, Springer Verlag Berlin,New York.
- Dagum, C. (1977a). The generation and distribution of income, the Lorenz curve and the Gini ratio, Economie Appliquee, 33, 327-367.
- Dagum, C. (1977b). A new model of personal income distribution: Specification and estimation, Economie Appliquee, 30, 413-437.
- Dagum, C. and Lemmi, A. (1988). A Contribution to the Analysis of Income Distribution and Income Inequality and a Case Study: Italy, JAI Press, Greenwich.
- Johnson, R., Kotz, S. and Balakrishnan, N., (1995). Continuous Univariate Distribution, 2nd ed. Wiley and Sons, New York.
- Kundu, D. and Gupta, R.D. (2009) Bivariate generalized exponential distribution, Journal of Multivariate Analysis, 100, 581-593. https://doi.org/10.1016/j.jmva.2008.06.012
- Kundu, D. and Gupta, R.D. (2010), Modified Sarhan-Balakrishnan singular bivariate distribution, Journal of Statistical Planning and Inference, 140, 526-538. https://doi.org/10.1016/j.jspi.2009.07.026
- Kundu, D. and Dey, A. K. (2009). Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm, Comput. Statist. Data Anal, 53, pp. 956-965. https://doi.org/10.1016/j.csda.2008.11.009
- Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution, Journal of the American Statistical Association, 62, 30-44. https://doi.org/10.1080/01621459.1967.10482885
- Meintanis, S. G. (2007). Test of fit for Marshall-Olkin distributions with applications, Journal of Statistical Planning and inference, 137, 3954-3963. https://doi.org/10.1016/j.jspi.2007.04.013
- Muhammed, H. Z. (2016). Bivariate Inverse Weibull Distribution, Journal of Statistical Computation and Simulation, 86(12), 2335-2345. https://doi.org/10.1080/00949655.2015.1110585
- Nelson, W. (1982). Applied Lifetime Data Analysis. Wiley, New York.
- Prentice, R.L. (1973). Exponential survivals with censoring and explanatory variables, Biometrika, 60, 279-288. https://doi.org/10.1093/biomet/60.2.279
- Sarhan A. and Balakrishnan N. (2007). A new class of bivariate distribution and its mixture, Journal of Multivariate Analysis, 98, 1508-1527. https://doi.org/10.1016/j.jmva.2006.07.007
- Sarhan, A., Hamilton, D. C., Smith, B. and Kundu, D. (2011). The bivariate generalized linear failure rate distribution and its multivariate extension, Comput. Statist. Data Anal, 55, 644-654. https://doi.org/10.1016/j.csda.2010.06.006