DOI QR코드

DOI QR Code

Terahertz Generation Based on Cascaded Difference Frequency Generation with Periodically-poled KTiOPO4

  • Li, Zhongyang (North China University of Water Resources and Electric Power) ;
  • Wang, Silei (North China University of Water Resources and Electric Power) ;
  • Wang, Mengtao (North China University of Water Resources and Electric Power) ;
  • Wang, Weishu (North China University of Water Resources and Electric Power)
  • Received : 2016.05.31
  • Accepted : 2017.03.08
  • Published : 2017.04.25

Abstract

Terahertz (THz) generation by periodically-poled $KTiOPO_4$ (PPKTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation (DFG) processes is theoretically analyzed. The cascaded Stokes interaction processes and the cascaded anti-Stokes interaction processes are investigated from coupled wave equations. THz intensities and quantum conversion efficiency are calculated. Compared with non-cascaded DFG processes, THz intensities from 10-order cascaded DFG processes are increased to 5.53. The quantum conversion efficiency of 479.4% in cascaded processes, which exceeds the Manley-Rowe limit, can be realized.

Keywords

References

  1. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, "Wireless sub-THz communication system with high data rate," Nat. Photon. 7, 977-981 (2013). https://doi.org/10.1038/nphoton.2013.275
  2. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, "Terahertz compressive imaging with metamaterial spatial light modulators," Nat. Photon. 8, 605-609 (2014). https://doi.org/10.1038/nphoton.2014.139
  3. M. Johnston, "Plasmonics: Superfocusing of terahertz waves," Nat. Photon. 1, 14-15 (2007). https://doi.org/10.1038/nphoton.2006.60
  4. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1, 97-105 (2007). https://doi.org/10.1038/nphoton.2007.3
  5. Y. J. Ding, "Progress in terahertz sources based on differencefrequency generation [Invited]," J. Opt. Soc. Am. B 31, 2696-2711 (2014). https://doi.org/10.1364/JOSAB.31.002696
  6. A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, "Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1," Appl. Phys. Lett. 105, 141115 (2014). https://doi.org/10.1063/1.4897639
  7. B. Dolasinski, P. E. Powers, J. W. Haus, and A. Coone, "Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG," Opt. Express 23, 3669-3680 (2015). https://doi.org/10.1364/OE.23.003669
  8. K. Saito, T. Tanabe, and Y. Oyama, "Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing," Appl. Opt. 53, 3587-3592 (2014). https://doi.org/10.1364/AO.53.003587
  9. P. Liu, D. Xu, H. Yu, H. Zhang, Z. Li, K. Zhong, Y. Wang, and J. Yao, "Coupled-mode theory for Cherenkov-type guided-wave terahertz generation via cascaded difference frequency generation," J. Lightwave Technol. 31, 2508-2514 (2013). https://doi.org/10.1109/JLT.2013.2268876
  10. A. J. Lee and H. M. Pask, "Cascaded stimulated polariton scattering in a Mg:$LiNbO_3$ terahertz laser," Opt. Express 23, 8687-8698 (2015). https://doi.org/10.1364/OE.23.008687
  11. K. Saito, T. Tanabe, and Y. Oyama, "Cascaded terahertz-wave generation efficiency in excess of the Manley-Rowe limit using a cavity phase-matched optical parametric oscillator," J. Opt. Soc. Am. B 32, 617-621 (2015). https://doi.org/10.1364/JOSAB.32.000617
  12. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, "$K_xRb_{1-x}$ $TiOPO_4$: a new nonlinear optical material," J. Appl. Phys. 47, 4980-4985 (1976). https://doi.org/10.1063/1.322459
  13. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268-2294 (1997). https://doi.org/10.1364/JOSAB.14.002268
  14. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, "Laserinduced damage investigation at 1064 nm in $KTiOPO_4$ crystals and its analogy with $RbTiOPO_4$," Appl. Opt. 48, 4263-4269 (2009). https://doi.org/10.1364/AO.48.004263
  15. H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, "Control of forward stimulated polariton scattering in periodically-poled KTP crystals," Opt. Express 21, 27277-27283 (2013). https://doi.org/10.1364/OE.21.027277
  16. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, "Terahertz parametric oscillator based on $KTiOPO_4$ crystal," Opt. Lett. 39, 3706-3709 (2014). https://doi.org/10.1364/OL.39.003706
  17. T. Ortega, H. M. Pask, D. Spence, and A. Lee, "Competition effects between stimulated raman and polariton scattering in intracavity $KTiOPO_4$ crystal, "Advanced Solid State Lasers, Optical Society of America, ATu3A, ATu3A. 3 (2015).
  18. L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric $LiNbO_3$ in the THz range," J. Appl. Phys. 97, 123505 (2005). https://doi.org/10.1063/1.1929859
  19. G. Kugel, F. Brehat, B. Wyncke, M. Fontana, G. Marnier, C. C. Nedelec, and J. Mangin, "The vibrational spectrum of a $KTiOPO_4$ single crystal studied by Raman and infrared reflectivity spectroscopy," J. Phys. C 21, 5565-5583 (1988). https://doi.org/10.1088/0022-3719/21/32/011
  20. K. Kato and E. Takaoka, "Sellmeier and thermo-optic dispersion formulas for KTP," Appl. Opt. 41, 5040-5044 (2012).
  21. C. F. Hu, K. Zhong, J. L. Mei, M. R. Wang, S. B. Guo, W. Z. Xu, P. X. Liu, D. G. Xu, Y. Y. Wang, and J. Q. Yao, "Theoretical analysis of terahertz generation in periodically inverted nonlinear crystals based on cascaded difference frequency generation process," Mod. Phys. Lett. B 29, 1450263 (2015). https://doi.org/10.1142/S0217984914502637

Cited by

  1. Frequency Conversion in KTP Crystal and Its Isomorphs vol.8, pp.10, 2018, https://doi.org/10.3390/cryst8100386