DOI QR코드

DOI QR Code

Demonstration of the Usefulness of Optical Coherence Tomography in Imaging a Mouse Tail Model of Lymphedema

  • Kim, Hui Dong (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University) ;
  • Kim, Dong Kyu (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University) ;
  • Chae, Yu-Gyeong (Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University) ;
  • Park, Seok Gyo (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University) ;
  • Kim, Ghi Chan (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University) ;
  • Jeong, Ho Joong (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University) ;
  • Sim, Young-Joo (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University) ;
  • Ahn, Yeh-Chan (Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University)
  • Received : 2016.09.07
  • Accepted : 2017.01.05
  • Published : 2017.04.25

Abstract

To investigate the usefulness of optical coherence tomography (OCT) for imaging lymphedema, we directly compared it to other histological methods in a mouse model of lymphedema. We performed detailed imaging of the lymphedema lesion on a mouse tail. We imaged the mouse tail in vivo with OCT and created histopathological samples. We constructed a spectrometer-based OCT system using a fiber-optic Michelson interferometer. The light was directed to 50:50 couplers that split the light into reference and sample arms. Backscattered light from a reference mirror and the sample produced an interference fringe. An OCT image of the lymphedema model revealed an inflammatory reaction of the skin that was accompanied by edema, leading to an increase in the light attenuation in the dermal and subcutaneous layers. Similar to OCT image findings, histological biopsy showed an inflammatory response that involved edema, increased neutrophils in epidermis and subdermis, and lymphatic microvascular dilatation. Furthermore, the lymphedema model showed an increase in thickness of the dermis in both diagnostic studies. In the mouse tail model of lymphedema, OCT imaging showed very similar results to other histological examinations. OCT provides a quick and useful diagnostic imaging technique for lymphedema and is a valuable addition or complement to other noninvasive imaging tools.

Keywords

References

  1. S. G. Rockson, "Lymphedema," Am. J. Med. 110, 288-95 (2001). https://doi.org/10.1016/S0002-9343(00)00727-0
  2. A. Szuba and S. G. Rockson, "Lymphedema: anatomy, physiology and pathogenesis," Vasc. Med. 2, 321-6 (1997). https://doi.org/10.1177/1358863X9700200408
  3. J. Daroczy, "Pathology of lymphedema," Clin. Dermatol. 13, 433-44 (1995). https://doi.org/10.1016/0738-081X(95)00086-U
  4. A. G. Warren, H. Brorson, L. J. Borud, and S. A. Slavin, "Lymphedema: a comprehensive review," Ann. Plast. Surg. 59, 464-72 (2007). https://doi.org/10.1097/01.sap.0000257149.42922.7e
  5. T. J. Ryan, "The lymphatics of the skin. in: the physiology and pathophysiology of the skin," London: Academic press 5, 1755-80 (1978).
  6. B. Battistini, P. D'Orléans-Juste, and P. Sirois, "Endothelins: circulating plasma levels and presence in other biologic fluids," Lab. Invest. 68, 600-28 (1993).
  7. R. Tabibiazar, L. Cheung, J. Han, J. Swanson, A. Beilhack, A. an, S. S. Dadras, N. Rockson, S. Joshi, R. Wagner, and S. G. Rockson, "Inflammatory manifestations of experimental lymphatic insufficiency," PLoS Med. 3, 1114-1139 (2006).
  8. K. C. Johnson, A. G. Kennedy, and S. M. Henry, "Clinical measurements of lymphedema," Lymphat. Res. Biol. 12, 216-21 (2014). https://doi.org/10.1089/lrb.2014.0019
  9. A. Szuba and S. G. Rockson, "Lymphedema: classification, diagnosis and therapy," Vasc Med 3, 145-156 (1998). https://doi.org/10.1177/1358836X9800300209
  10. N. L. Stout, L. A. Pfalzer, E. Levy, C. McGarvey, B. Springer, L. H. Gerber, and P. Soballe, "Segmental limb volume change as a predictor of the onset of lymphedema in women with early breast cancer," PM R 3, 1098-105 (2011). https://doi.org/10.1016/j.pmrj.2011.07.021
  11. S. A. Czerniec, L. C. Ward, K. M. Refshauge, J. Beith, M. J. Lee, S. York, and S. L. Kilbreath, "Assessment of breast cancer-related arm lymphedema--comparison of physical measurement methods and self-report," Cancer Invest 28, 54-62 (2010). https://doi.org/10.3109/07357900902918494
  12. A. W. Stanton, C. Badger, and J. Sitzia, "Non-invasive assessment of the lymphedematous limb," Lymphology 33, 122-35 (2000).
  13. J. M. Armer and B. R. Stewart, "A comparison of four diagnostic criteria for lymphedema in a post-breast cancer population," Lymphat. Res. Biol. 3, 208-217 (2005). https://doi.org/10.1089/lrb.2005.3.208
  14. S. Hayes, B. Cornish, and B. Newman, "Comparison of methods to diagnose lymphoedema among breast cancer survivors: 6-month follow-up," Breast Cancer Res. Treat. 89, 221-6 (2005). https://doi.org/10.1007/s10549-004-2045-x
  15. D. E. Gary, "Lymphedema diagnosis and management," J. Am. Acad. Nurse Pract. 19, 72-78 (2007). https://doi.org/10.1111/j.1745-7599.2006.00198.x
  16. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991). https://doi.org/10.1126/science.1957169
  17. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G Fujimoto, "Optical coherence tomography of the human retina," Archives of ophthalmology 113, 325-32 (1995). https://doi.org/10.1001/archopht.1995.01100030081025
  18. B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, "Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice," J. Biomed. Opt. 13, 11003 (2008). https://doi.org/10.1117/1.2870170
  19. B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, "Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography," J. Biomed. Opt. 16, 076013 (2011). https://doi.org/10.1117/1.3598842
  20. F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M Rowland, P. A. Johnson, and S. A. Boppart, "Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer," IEEE Eng. Med. Biol. Mag. 29, 63-70 (2010).
  21. R. A. McLaughlin, L. Scolaro, P. Robbins, S. Hamza, C. Saunders, and D. D. Sampson, "Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer," Cancer Res. 70, 2579-2584 (2010). https://doi.org/10.1158/0008-5472.CAN-09-4062
  22. S. A. McLaughlin, M. J. Wright, K. T. Morris, G. L. Giron, M. R. Sampson, J. P. Brockway, K. E. Hurley, E. R. Riedel, and K. J. Van zee, "Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: objective measurements," J. Clin. Oncol. 26, 5213-9 (2008). https://doi.org/10.1200/JCO.2008.16.3725
  23. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-7 (2001). https://doi.org/10.1038/86589
  24. B. A. Standish, V. X. Yang, N. R. Munce, L. M. Wong Kee Song, G. Gardiner, A. Lin, Y. I. Mao, A. Vitkin, N. E. Marcon, and B. C. Wilson "Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus," Gastrointest. Endosc. 66, 326-33 (2007). https://doi.org/10.1016/j.gie.2007.02.040
  25. T. Aoki, M. Rodriguez-Porcel, Y. Matsuo, A. Cassar, T. G. Kwon, F. Franchi, R. Gulati, S. S. Kushwaha, R. J. Lennon, L. O. Lerman, E. L. Ritman, and A. Lerman "Evaluation of coronary adventitial vasa vasorum using 3D optical coherence tomography--animal and human studies," Atherosclerosis 239, 203-8 (2015). https://doi.org/10.1016/j.atherosclerosis.2015.01.016
  26. S. Ghanta, D. A. Cuzzone, J. S. Torrisi, N. J. Albano, W. J. Joseph, I. L. Savetsky, J. C. Gardenier, D. Chang, J. Zampell, and B. J. Mehrara, "Regulation of inflammation and fibrosis by macrophages in lymphedema," Am. J. Physiol. Heart Circ. Physiol. 308, 1065-77 (2015). https://doi.org/10.1152/ajpheart.00598.2014
  27. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, "Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography," Circulation 107, 113-9 (2003). https://doi.org/10.1161/01.CIR.0000044384.41037.43
  28. M. Nakano, M. Vorpahl, F. Otsuka, M. Taniwaki, S. K. Yazdani, and A. V. Finn, "Ex vivo assessment of vascular response to coronary stents by optical frequency domain imaging," JACC Cardiovasc. Imaging 5, 71-82 (2012). https://doi.org/10.1016/j.jcmg.2011.09.015
  29. M. Kashiwagi, L. Liu, K. K. Chu, C. H. Sun, A. Tanaka, J. A. Gardecki, and G. J. Tearney, "Feasibility of the assessment of cholesterol crystals in human macrophages using micro optical coherence tomography," PLoS One 9, e102669 (2014). https://doi.org/10.1371/journal.pone.0102669
  30. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, "Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography," Nat. Med. 17, 1010-4 (2011). https://doi.org/10.1038/nm.2409

Cited by

  1. Relative Humidity Sensor Based on a Few-Mode Microfiber Knot Resonator by Mitigating the Group Index Difference of a Few-Mode Microfiber vol.36, pp.4, 2018, https://doi.org/10.1109/JLT.2017.2756639