DOI QR코드

DOI QR Code

다수준 시스템의 중복 할당 최적화 문제

Multi-Level Redundancy Allocation Optimization Problems

  • 투고 : 2016.10.26
  • 심사 : 2017.02.15
  • 발행 : 2017.04.15

초록

This paper considers redundancy optimization problems of multi-level systems and reviews existing papers which proposed various optimization models and used different algorithms in this research area. Three different mathematical models are studied: Multi-level redundancy allocation (MRAP), multiple multi-level redundancy allocation, and availability-based MRAP models. Many meta-heuristics are applied to find optimal solutions in the several optimization problems. We summarized key idea of meta-heuristics applied to the existing MARP problems. Two extended models (MRAP with interval reliability of units and an integrated optimization problem of MRAP and preventive maintenance) are studied and further research ideas are discussed.

키워드

참고문헌

  1. Aggawal, K. K., Gupta, J. S., and Misra, K. B. (1975), A new heuristic criterion for solving a redundancy optimization, IEEE Transactions on Reliability, 24(1), 86-87.
  2. Chern, M. S. (1992), On the Computational complexity of reliability redundancy allocation in a series system, Operations Research Letters, 11(5), 309-315. https://doi.org/10.1016/0167-6377(92)90008-Q
  3. Chung, I. H. (2013), Optimization of Redundancy Allocation in Multi Level System under Target Availability, Journal of Korean Society for Quality Management, 41(3), 413-422. https://doi.org/10.7469/JKSQM.2013.41.3.413
  4. Chung, I. H. (2015), Optimization of Redundancy Allocation in Multi Level System considering Alternative Units, Journal of Korean Society for Quality Management, 43(1), 31-42. https://doi.org/10.7469/JKSQM.2015.43.1.031
  5. Chung, I. H., Yun, W. Y., and Kim, H. G. (2008), Redundancy optimization in multi-level system using metaheuristics, Recent Advances in Stochastic Operations Research II(edited by T. Dohi, S. Osaki, and K. Sawaki, 183-200.
  6. Deb, K., Pratap, A., Agrawal, S., and Meyarivan, T. (2002), A fast and elitist multiobjective genetic algorithm : NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017
  7. Gupta, R. K., Bhunia, A. K., and Roy, D. (2009), A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components, Journal of Computational and Applied Mathematics, 232(2), 275-284. https://doi.org/10.1016/j.cam.2009.06.008
  8. Han, Y. J., Yun, W. Y., and Lee, J. Y. (2015), A simulation-based multi-level redundancy allocation for a multi-level system, International Journal of Performability Engineering, 11(4), 357-367.
  9. He, P., Wu, K., Xu, J., Wen, J., and Jiang, Z. (2013), Multilevel redundancy allocation using two dimensional arrays encoding and hybrid genetic algorithm, Computers and Industrial Engineering, 64(1), 69-83. https://doi.org/10.1016/j.cie.2012.08.008
  10. Hsieh, T. J. (2014), Hierarchical redundancy allocation for multi-level reliability systems employing a bacterial-inspired evolutionary algorithm, Information Sciences, 288, 174-193. https://doi.org/10.1016/j.ins.2014.07.055
  11. Jang, K. J. and Kim, J. H. (2011), A tabu search for multiple multi-level redundancy allocation problem in series-parallel systems, International Journal of Industrial Engineering, 18(3), 120-129.
  12. Kulturel-Konak, S., Norman, B.A., Coit, D.W., and Smith, A.E. (2004), Exploiting tabu search memory in constrained problems, INFORMS Journal on Computing, 16(3), 241-254. https://doi.org/10.1287/ijoc.1030.0040
  13. Kumar, R., Izui, K., Yoshimura, M., and Nishiwaki, S. (2008), Multilevel redundancy allocation optimization using hierarchical genetic algorithm, IEEE Transaction on Reliability, 57(4), 650-661. https://doi.org/10.1109/TR.2008.2006079
  14. Kumar, R., Izui, K., Yoshimura, M., and Nishiwaki, S. (2009), Optimal multilevel redundancy allocation in series and seriesparallel systems, Computers and Industrial Engineering, 57(1), 169-180. https://doi.org/10.1016/j.cie.2008.11.008
  15. Kumar, R., Izui, K., Yoshimura, M., and Nishiwaki, S. (2009), Multiobjective hierarchical genetic algorithms for multilevel redundancy allocation optimization, Reliability Engineering and System Safety, 94(4), 891-904. https://doi.org/10.1016/j.ress.2008.10.002
  16. Kuo, W. and Prasad, V. R. (2000), An annotated overview of system-reliability optimization, IEEE Transactions on Reliability, 49(2), 176-187. https://doi.org/10.1109/24.877336
  17. Kuo, W., Prasad, V. R., Tillman, F.A., and Hwang, C.-L. (2001), Optimal reliability design, Cambridge University Press.
  18. Kuo, W. and Wan, R. (2007), Recent advances in optimal reliability allocation, Computational Intelligence in reliability engineering edited by Gregory Levitin, Spring, 1-36.
  19. Pourdarvish, A. and Ramezani, Z. (2013), Cold standby redundancy allocation in a multi-level series system by memetic algorithm, International Journal of Reliability, Quality and Safety Engineering, 20(3), 1-16.
  20. Wang, Z., Tang, K., and Yao, X. (2010), A memetic algorithm for multi-level redundancy allocation, IEEE Transactions on Reliability, 59(4), 754-765. https://doi.org/10.1109/TR.2010.2055927
  21. Yeh, W.C. (2009), A two-stage discrete particle swarm optimization for the problem of multiplemulti-level redundancy allocation in series systems, Expert Systems with Applications, 36(5), 9192-9200. https://doi.org/10.1016/j.eswa.2008.12.024
  22. Yun, W. Y., Chung, I. H., and Kim, H. G. (2006), Redundancy optimization in multi-level system with SA algorithm, Proceedings of the 2nd Asian International Workshop, 185-192.
  23. Yun, W. Y. and Kim, J. W. (2004), Multi-level redundancy optimization in series systems, Computers and Industrial Engineering, 46(2), 337-346. https://doi.org/10.1016/j.cie.2003.12.013
  24. Yun, W. Y., Song, Y. M., and Kim, H. G. (2007), Multiple multi-level redundancy allocation in series systems, Reliability Engineering and System Safety, 92(3), 308-313. https://doi.org/10.1016/j.ress.2006.04.006
  25. Zitzler, E., Laumanns, M., and Thiele, L. (2001), SPEA2 : Improving the strength Pareto evolutionary algorithm, TIK Report no. 103, Swiss Federal Institute of Technology.