DOI QR코드

DOI QR Code

Vibration analysis of a beam on a nonlinear elastic foundation

  • Karahan, M.M. Fatih (Department of Mechanical Engineering, Manisa Celal Bayar University) ;
  • Pakdemirli, Mehmet (Department of Mechanical Engineering, Manisa Celal Bayar University)
  • 투고 : 2016.04.28
  • 심사 : 2017.01.02
  • 발행 : 2017.04.25

초록

Nonlinear vibrations of an Euler-Bernoulli beam resting on a nonlinear elastic foundation are discussed. In search of approximate analytical solutions, the classical multiple scales (MS) and the multiple scales Lindstedt Poincare (MSLP) methods are used. The case of primary resonance is investigated. Amplitude and phase modulation equations are obtained. Steady state solutions are considered. Frequency response curves obtained by both methods are contrasted with each other with respect to the effect of various physical parameters. For weakly nonlinear systems, MS and MSLP solutions are in good agreement. For strong hardening nonlinearities, MSLP solutions exhibit the usual jump phenomena whereas MS solutions are not reliable producing backward curves which are unphysical.

키워드

참고문헌

  1. Boyaci, H. (2006), "Vibrations of stretched damped beams under non-ideal boundary conditions", Sadhana-Acad. P. Eng. S., 31(1), 1-8.
  2. Boyaci, H. and Pakdemirli, M. (1997), "A comparison of different versions of the method of multiple scales for partial differential equations", J. Sound Vib., 204(4), 595-607. https://doi.org/10.1006/jsvi.1997.0951
  3. Cheung, Y.K., Chen, S.H. and Lau, S.L. (1991), "A modified Lindstedt Poincare method for certain strongly nonlinear oscillators", Int. J. Nonlin. Mech., 26 (3-4), 367-378. https://doi.org/10.1016/0020-7462(91)90066-3
  4. Coskun, I. and Engin H. (1999), "Nonlinear vibrations of a beam on an elastic foundation", J. Sound Vib., 223, 335-354. https://doi.org/10.1006/jsvi.1998.1973
  5. Ding, H., Chen, L.Q. and Yang, S.P. (2012), "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load", J. Sound Vib., 331, 2426-2442. https://doi.org/10.1016/j.jsv.2011.12.036
  6. Ghayesh M.H. (2012b), "Stability and bifurcations of an axially moving beam with an intermediate spring support", Nonlin. Dyn., 69, 193-210 https://doi.org/10.1007/s11071-011-0257-2
  7. Ghayesh, M.H, Amabili, M. and Paidoussis, M.P. (2012b), "Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis", Nonlin. Dyn., 70 (1), 335-354 https://doi.org/10.1007/s11071-012-0458-3
  8. Ghayesh, M.H. (2012a), "Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring", Nonlin. Anal. Real World Appl., 13, 1319-1333. https://doi.org/10.1016/j.nonrwa.2011.10.009
  9. Ghayesh, M.H. and Paidoussis, M.P. (2010), "Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array", Int. J. Nonlin. Mech., 45, 507-524. https://doi.org/10.1016/j.ijnonlinmec.2010.02.001
  10. Ghayesh, M.H., Kazemirad, S. and Darabi, M.A. (2011b), "A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions", J. Sound Vib., 330, 5382-5400. https://doi.org/10.1016/j.jsv.2011.06.001
  11. Ghayesh, M.H., Kazemirad, S. and Reid, T. (2012a), "Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: A general solution procedure", Appl. Math. Model., 36, 3299-3311. https://doi.org/10.1016/j.apm.2011.09.084
  12. Ghayesh, M.H., Paidoussis, M.P. and Modarres-Sadeghi, Y. (2011a), "Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass", J. Sound Vib., 330, 2869-2899. https://doi.org/10.1016/j.jsv.2010.12.023
  13. He, J.H. (1999), "Variational iteration method: a kind of nonlinear analytical technique: some examples", Int. J. Nonlin. Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
  14. He, J.H. (2003), "Linearized perturbation technique and its applications to strongly nonlinear oscillators", Comput. Math. Appl., 45, 1-8. https://doi.org/10.1016/S0898-1221(03)80002-0
  15. Hosseini, L. and Hosseini, S.A.A. (2015), "A general analytical approximation for nonlinear vibrations analysis of continuous systems using renormalization group method", Appl. Math. Model., 39, 182-193. https://doi.org/10.1016/j.apm.2014.05.005
  16. Hu, H. (2004), "A classical perturbation technique which is valid for large parameters", J. Sound Vib., 269, 409-412. https://doi.org/10.1016/S0022-460X(03)00318-3
  17. Karahan, M.M.F. and Pakdemirli, M. (2017), "Free and forced vibrations of the strongly nonlinear cubic-quintic Duffing oscillators", Z. Naturforsch., 72(1), 59-69.
  18. Leung, A.Y.T. and Guo, Z. (2011), "Residue harmonic balance approach to limit cycles of non-linear jerk equations", Int. J. Nonlin. Mech., 46, 898-906. https://doi.org/10.1016/j.ijnonlinmec.2011.03.018
  19. Liao S.J. (2004), "On the homotopy analysis method for nonlinear problems", Appl. Math. Comput., 147, 499-513.
  20. Lim, C.W. and Wu, B.S. (2002), "A modified Mickens procedure for certain non-linear oscillators", J. Sound Vib., 257, 202-206. https://doi.org/10.1006/jsvi.2001.4233
  21. Maccari, A. (1999), "The asymptotic perturbation method for nonlinear continuous systems", Nonlin. Dyn., 19, 1-18. https://doi.org/10.1023/A:1008304701252
  22. Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, John Wiley&Sons, New York, USA.
  23. Nayfeh, A.H. (2005), "Resolving controversies in the application of the method of multiple scales and the generalized method of averaging", Nonlin. Dyn., 40, 61-102. https://doi.org/10.1007/s11071-005-3937-y
  24. Oz, H.R. and Pakdemirli, M. (2006), "Two-to-one internal resonances in a shallow curved beam resting on an elastic foundation", Acta Mech., 185, 245-260. https://doi.org/10.1007/s00707-006-0352-5
  25. Oz, H.R., Pakdemirli, M., Ozkaya, E. and Yilmaz, M. (1998), "Non-linear vibrations of a slightly curved beam resting on a non-linear elastic foundation", J. Sound Vib., 212(2), 295-309. https://doi.org/10.1006/jsvi.1997.1428
  26. Ozhan, B.B. and Pakdemirli, M. (2009), "A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: Primary resonance case", J. Sound Vib., 325, 894-906 https://doi.org/10.1016/j.jsv.2009.04.009
  27. Ozhan, B.B. and Pakdemirli, M. (2010), "A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: three-to-one internal resonances with external excitation", J. Sound Vib., 329(13), 2603-2615. https://doi.org/10.1016/j.jsv.2010.01.010
  28. Ozhan, B.B. and Pakdemirli, M. (2012), "Principal parametric resonances of a general continuous system with cubic nonlinearities", Appl. Math. Comput., 219, 2412-2423.
  29. Ozkaya, E. And Tekin, A. (2007), "Non linear vibrations of stepped beam system under different boundary conditions", Struct. Eng. Mech., 27(3), 333-345 https://doi.org/10.12989/sem.2007.27.3.333
  30. Ozkaya, E., Bagdatli, S.M. and Oz, H.R. (2008), "Nonlinear transverse vibrations and 3:1 internal resonances of a beam with multiple supports", J. Vib. Acoust., 130, 021013-1-021013-11. https://doi.org/10.1115/1.2775508
  31. Pakdemirli M. (2015b), "Precession of a planet with the multiple scales Lindstedt-Poincare Technique", Z. Naturforsch., 70, 829-834.
  32. Pakdemirli, M. (1994) "A comparison of two perturbation methods for vibrations of systems with quadratic and cubic nonlinearities", Mech. Res. Commun., 21, 203-208. https://doi.org/10.1016/0093-6413(94)90093-0
  33. Pakdemirli, M. (2001), "Vibrations of continuous systems with a general operator notation suitable for perturbative calculations", J. Sound Vib., 246, 841-851. https://doi.org/10.1006/jsvi.2001.3691
  34. Pakdemirli, M. (2015a), "Perturbation-iteration method for strongly nonlinear vibrations", J Vib Control., DOI: 10.1177/1077546315586647.
  35. Pakdemirli, M. and Boyaci, H. (1995), "Comparison of directperturbation methods with discretization-perturbation methods for nonlinear vibrations", J. Sound Vib., 186, 837-845. https://doi.org/10.1006/jsvi.1995.0491
  36. Pakdemirli, M. and Karahan, M.M.F. (2010), "A new perturbation solution for systems with strong quadratic and cubic nonlinearities", Math. Meth. Appl. Sci., 33, 704-712.
  37. Pakdemirli, M. and Ozkaya, E. (2003), "Three-to-one internal resonances in a general cubic non-linear continuous system", J. Sound Vib., 268, 543-553. https://doi.org/10.1016/S0022-460X(03)00364-X
  38. Pakdemirli, M. and Sari, G. (2015a), "Solution of quadratic nonlinear problems with multiple scales Lindstedt-Poincare Method" Math. Comput. Appl., 20, 137-150.
  39. Pakdemirli, M. and Sari, G. (2015b), "Perturbation solutions of the quintic Duffing equation with strong nonlinearities", Commun. Numer. Anal., 2015, 82-89. https://doi.org/10.5899/2015/cna-00230
  40. Pakdemirli, M., Karahan, M.M.F. and Boyaci, H. (2009), "A new perturbation algorithm with better convergence properties: Multiple Scales Lindstedt Poincare method", Math. Comput. Appl., 14(1), 31-44.
  41. Pakdemirli, M., Karahan, M.M.F. and Boyaci, H. (2011), "Forced vibrations of strongly nonlinear systems with multiple scales Lindstedt Poincare Method", Math. Comput. Appl., 16(4), 879-889.
  42. Raju, K.K. and Rao, G.V. (1993), "Effect of a non-linear elastic foundation on the mode shapes in stability and vibration problems of uniform columns/beams", J. Sound Vib., 16, 369-371.
  43. Wu, B.S., Lim, C.W. and Sun, W.P. (2006), "Improved harmonic balance approach to periodic solutions of nonlinear jerk equations", Phys. Lett. A., 354, 95-100. https://doi.org/10.1016/j.physleta.2006.01.020

피인용 문헌

  1. Behavior of dry medium and loose sand-foundation system acted upon by impact loads vol.64, pp.6, 2017, https://doi.org/10.12989/sem.2017.64.6.703
  2. A general closed-form solution to a Timoshenko beam on elastic foundation under moving harmonic line load vol.66, pp.3, 2017, https://doi.org/10.12989/sem.2018.66.3.387