References
- Boyaci, H. (2006), "Vibrations of stretched damped beams under non-ideal boundary conditions", Sadhana-Acad. P. Eng. S., 31(1), 1-8.
- Boyaci, H. and Pakdemirli, M. (1997), "A comparison of different versions of the method of multiple scales for partial differential equations", J. Sound Vib., 204(4), 595-607. https://doi.org/10.1006/jsvi.1997.0951
- Cheung, Y.K., Chen, S.H. and Lau, S.L. (1991), "A modified Lindstedt Poincare method for certain strongly nonlinear oscillators", Int. J. Nonlin. Mech., 26 (3-4), 367-378. https://doi.org/10.1016/0020-7462(91)90066-3
- Coskun, I. and Engin H. (1999), "Nonlinear vibrations of a beam on an elastic foundation", J. Sound Vib., 223, 335-354. https://doi.org/10.1006/jsvi.1998.1973
- Ding, H., Chen, L.Q. and Yang, S.P. (2012), "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load", J. Sound Vib., 331, 2426-2442. https://doi.org/10.1016/j.jsv.2011.12.036
- Ghayesh M.H. (2012b), "Stability and bifurcations of an axially moving beam with an intermediate spring support", Nonlin. Dyn., 69, 193-210 https://doi.org/10.1007/s11071-011-0257-2
- Ghayesh, M.H, Amabili, M. and Paidoussis, M.P. (2012b), "Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis", Nonlin. Dyn., 70 (1), 335-354 https://doi.org/10.1007/s11071-012-0458-3
- Ghayesh, M.H. (2012a), "Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring", Nonlin. Anal. Real World Appl., 13, 1319-1333. https://doi.org/10.1016/j.nonrwa.2011.10.009
- Ghayesh, M.H. and Paidoussis, M.P. (2010), "Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array", Int. J. Nonlin. Mech., 45, 507-524. https://doi.org/10.1016/j.ijnonlinmec.2010.02.001
- Ghayesh, M.H., Kazemirad, S. and Darabi, M.A. (2011b), "A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions", J. Sound Vib., 330, 5382-5400. https://doi.org/10.1016/j.jsv.2011.06.001
- Ghayesh, M.H., Kazemirad, S. and Reid, T. (2012a), "Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: A general solution procedure", Appl. Math. Model., 36, 3299-3311. https://doi.org/10.1016/j.apm.2011.09.084
- Ghayesh, M.H., Paidoussis, M.P. and Modarres-Sadeghi, Y. (2011a), "Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass", J. Sound Vib., 330, 2869-2899. https://doi.org/10.1016/j.jsv.2010.12.023
- He, J.H. (1999), "Variational iteration method: a kind of nonlinear analytical technique: some examples", Int. J. Nonlin. Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
- He, J.H. (2003), "Linearized perturbation technique and its applications to strongly nonlinear oscillators", Comput. Math. Appl., 45, 1-8. https://doi.org/10.1016/S0898-1221(03)80002-0
- Hosseini, L. and Hosseini, S.A.A. (2015), "A general analytical approximation for nonlinear vibrations analysis of continuous systems using renormalization group method", Appl. Math. Model., 39, 182-193. https://doi.org/10.1016/j.apm.2014.05.005
- Hu, H. (2004), "A classical perturbation technique which is valid for large parameters", J. Sound Vib., 269, 409-412. https://doi.org/10.1016/S0022-460X(03)00318-3
- Karahan, M.M.F. and Pakdemirli, M. (2017), "Free and forced vibrations of the strongly nonlinear cubic-quintic Duffing oscillators", Z. Naturforsch., 72(1), 59-69.
- Leung, A.Y.T. and Guo, Z. (2011), "Residue harmonic balance approach to limit cycles of non-linear jerk equations", Int. J. Nonlin. Mech., 46, 898-906. https://doi.org/10.1016/j.ijnonlinmec.2011.03.018
- Liao S.J. (2004), "On the homotopy analysis method for nonlinear problems", Appl. Math. Comput., 147, 499-513.
- Lim, C.W. and Wu, B.S. (2002), "A modified Mickens procedure for certain non-linear oscillators", J. Sound Vib., 257, 202-206. https://doi.org/10.1006/jsvi.2001.4233
- Maccari, A. (1999), "The asymptotic perturbation method for nonlinear continuous systems", Nonlin. Dyn., 19, 1-18. https://doi.org/10.1023/A:1008304701252
- Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, John Wiley&Sons, New York, USA.
- Nayfeh, A.H. (2005), "Resolving controversies in the application of the method of multiple scales and the generalized method of averaging", Nonlin. Dyn., 40, 61-102. https://doi.org/10.1007/s11071-005-3937-y
- Oz, H.R. and Pakdemirli, M. (2006), "Two-to-one internal resonances in a shallow curved beam resting on an elastic foundation", Acta Mech., 185, 245-260. https://doi.org/10.1007/s00707-006-0352-5
- Oz, H.R., Pakdemirli, M., Ozkaya, E. and Yilmaz, M. (1998), "Non-linear vibrations of a slightly curved beam resting on a non-linear elastic foundation", J. Sound Vib., 212(2), 295-309. https://doi.org/10.1006/jsvi.1997.1428
- Ozhan, B.B. and Pakdemirli, M. (2009), "A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: Primary resonance case", J. Sound Vib., 325, 894-906 https://doi.org/10.1016/j.jsv.2009.04.009
- Ozhan, B.B. and Pakdemirli, M. (2010), "A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: three-to-one internal resonances with external excitation", J. Sound Vib., 329(13), 2603-2615. https://doi.org/10.1016/j.jsv.2010.01.010
- Ozhan, B.B. and Pakdemirli, M. (2012), "Principal parametric resonances of a general continuous system with cubic nonlinearities", Appl. Math. Comput., 219, 2412-2423.
- Ozkaya, E. And Tekin, A. (2007), "Non linear vibrations of stepped beam system under different boundary conditions", Struct. Eng. Mech., 27(3), 333-345 https://doi.org/10.12989/sem.2007.27.3.333
- Ozkaya, E., Bagdatli, S.M. and Oz, H.R. (2008), "Nonlinear transverse vibrations and 3:1 internal resonances of a beam with multiple supports", J. Vib. Acoust., 130, 021013-1-021013-11. https://doi.org/10.1115/1.2775508
- Pakdemirli M. (2015b), "Precession of a planet with the multiple scales Lindstedt-Poincare Technique", Z. Naturforsch., 70, 829-834.
- Pakdemirli, M. (1994) "A comparison of two perturbation methods for vibrations of systems with quadratic and cubic nonlinearities", Mech. Res. Commun., 21, 203-208. https://doi.org/10.1016/0093-6413(94)90093-0
- Pakdemirli, M. (2001), "Vibrations of continuous systems with a general operator notation suitable for perturbative calculations", J. Sound Vib., 246, 841-851. https://doi.org/10.1006/jsvi.2001.3691
- Pakdemirli, M. (2015a), "Perturbation-iteration method for strongly nonlinear vibrations", J Vib Control., DOI: 10.1177/1077546315586647.
- Pakdemirli, M. and Boyaci, H. (1995), "Comparison of directperturbation methods with discretization-perturbation methods for nonlinear vibrations", J. Sound Vib., 186, 837-845. https://doi.org/10.1006/jsvi.1995.0491
- Pakdemirli, M. and Karahan, M.M.F. (2010), "A new perturbation solution for systems with strong quadratic and cubic nonlinearities", Math. Meth. Appl. Sci., 33, 704-712.
- Pakdemirli, M. and Ozkaya, E. (2003), "Three-to-one internal resonances in a general cubic non-linear continuous system", J. Sound Vib., 268, 543-553. https://doi.org/10.1016/S0022-460X(03)00364-X
- Pakdemirli, M. and Sari, G. (2015a), "Solution of quadratic nonlinear problems with multiple scales Lindstedt-Poincare Method" Math. Comput. Appl., 20, 137-150.
- Pakdemirli, M. and Sari, G. (2015b), "Perturbation solutions of the quintic Duffing equation with strong nonlinearities", Commun. Numer. Anal., 2015, 82-89. https://doi.org/10.5899/2015/cna-00230
- Pakdemirli, M., Karahan, M.M.F. and Boyaci, H. (2009), "A new perturbation algorithm with better convergence properties: Multiple Scales Lindstedt Poincare method", Math. Comput. Appl., 14(1), 31-44.
- Pakdemirli, M., Karahan, M.M.F. and Boyaci, H. (2011), "Forced vibrations of strongly nonlinear systems with multiple scales Lindstedt Poincare Method", Math. Comput. Appl., 16(4), 879-889.
- Raju, K.K. and Rao, G.V. (1993), "Effect of a non-linear elastic foundation on the mode shapes in stability and vibration problems of uniform columns/beams", J. Sound Vib., 16, 369-371.
- Wu, B.S., Lim, C.W. and Sun, W.P. (2006), "Improved harmonic balance approach to periodic solutions of nonlinear jerk equations", Phys. Lett. A., 354, 95-100. https://doi.org/10.1016/j.physleta.2006.01.020
Cited by
- Behavior of dry medium and loose sand-foundation system acted upon by impact loads vol.64, pp.6, 2017, https://doi.org/10.12989/sem.2017.64.6.703
- A general closed-form solution to a Timoshenko beam on elastic foundation under moving harmonic line load vol.66, pp.3, 2017, https://doi.org/10.12989/sem.2018.66.3.387