References
- Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical functions, Dover, New York.
- Baek, H. Y. (2000). Lindley type estimators with the known norm. Journal of the Korean Data & Infor-mation Science Society, 11, 37-45.
- Baek, H. Y. and Lee, J.M. (2005). Lindley type estimators when the norm is restricted to an interval. Journal of the Korean Data & Information Science Society, 16, 1027-1039.
- Berger, J. (1975). Minimax estimation of location vectors for a wide class of densities. Annals of Statistics, 3, 1318-1328. https://doi.org/10.1214/aos/1176343287
- Egerton, M. F. and Laycock, P. J. (1982). An explicit formula for the risk of James-Stein estimators. The Canadian Journal of Statistics, 10, 199-205. https://doi.org/10.2307/3556182
- George, E. I. (1990). Developments in decision-theoretic variance estimation : Comment. Statistical Science, 5, 107-109. https://doi.org/10.1214/ss/1177012267
- James, W. and Stein D. (1961). Estimation with quadratic loss. In Proceedings Fourth Berkeley Symp. Math. Statis. Probability, 1, University of California Press, Berkeley, 361-380.
- Kariya, T. (1989). Equivariant estimation in a model with ancillary statistics. Annals of Statistics, 17, 920-928. https://doi.org/10.1214/aos/1176347151
- Kim, B. H., Baek, H. Y. and Chang, I.H. (2002), Improved estimators of the natural parameters in continuous multiparameter exponential families. Communication in Statistics-Theory and Methods, 31, 11-29. https://doi.org/10.1081/STA-120002431
- Lehmann, E. L. and Casella, G. (1999).Theory of Point Estimation, 2nd Ed., Springer-Verlag, New York.
- Lindley, D. V. (1962). Discussion of paper by C. Stein. Journal of The Royal Statistical Society B, 2, 265-296.
- Marchand, E. and Giri, N. C. (1993). James-Stein estimation with constraints on the norm. Communication in Statistics-Theory and Methods, 22, 2903-2924. https://doi.org/10.1080/03610929308831192
- Park, T. R. and Baek, H. Y. (2014). An approach to improving the James-Stein estimator shrinking towards projection vectors. Journal of the Korean Data & Information Science Society, 25, 1549-1555. https://doi.org/10.7465/jkdi.2014.25.6.1549
- Perron, F. and Giri, N. (1989). On the best equivariant estimator of mean of a multivariate normal population. Journal of Multivariate Analysis, 32, 1-16.
- Strawderman, W. E (1974). Minimax estimation of location parameters for certain spherically symmetric distributions. Journal of Multivariate Analysis, 4, 255-264. https://doi.org/10.1016/0047-259X(74)90032-3