References
- Acerbi, C. and Tasche, D. (2002). Expected shortfall: A natural coherent alternative to VaR. Economic Notes, 31, 379-388. https://doi.org/10.1111/1468-0300.00091
- Andersson, F., Mausser, H., Rosen, D. and Uryasev, S. (2001). Credit risk optimization with conditional value-at-risk criterion. Mathematical Programming, 89, 273-291. https://doi.org/10.1007/PL00011399
- Artzner, P., Delbaen, F., Eber, J. M. and Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203-228. https://doi.org/10.1111/1467-9965.00068
- Cai, J. and Li, H. (2005). Conditional tail expectations for multivariate phase-type distributions. Journal of Applied Probability, 42, 810-825. https://doi.org/10.1017/S0021900200000796
- Cousin, A. and Di Bernardino, E. (2013). On multivariate extensions of value-at-risk. Journal of Multivariate Analysis, 119, 32-46. https://doi.org/10.1016/j.jmva.2013.03.016
- Cousin, A. and Di Bernardino, E. (2014). On multivariate extensions of conditional-tail-expectation. Insur-ance: Mathematics and Economics, 55, 272-282. https://doi.org/10.1016/j.insmatheco.2014.01.013
- Embrechts, P., Mcneil, A.J. and Straumann, D. (1999). Correlation: Pitfalls and alternatives. Risk, 5, 69-71.
- Embrechts, P. and Puccetti, G. (2006). Bounds for functions of multivariate risks. Journal of Multivariate Analysis, 97, 526-547. https://doi.org/10.1016/j.jmva.2005.04.001
- Genest, C., Ghoudi, K. and Rivest, L. P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82, 543-552. https://doi.org/10.1093/biomet/82.3.543
- Hong, C. S. and Kim, T. W. (2016). Multivariate conditional tail expectations. Korean Journal of Applied Statistics, 29, 1201-1212.
- Hong, C. S. and Kwon, T. W. (2010). Distribution fitting for the rate of return and value at risk. Journal of the Korean Data & Information Science Society, 21, 219-229.
- Hong, C. S., Han, S. J. and Lee, G. P. (2016). Value at risk and alternative value at risk. Korean Journal of Applied Statistics, 29, 689-697. https://doi.org/10.5351/KJAS.2016.29.4.689
- Hong, C. S. and Lee, J. H. (2011a). VaR estimation of multivariate distribution using copula functions. Korean Journal of Applied Statistics, 24, 523-533. https://doi.org/10.5351/KJAS.2011.24.3.523
- Hong, C. S. and Lee, W. Y. (2011b). VaR estimation with multiple copula functions. Korean Journal of Applied Statistics, 24, 809-820. https://doi.org/10.5351/KJAS.2011.24.5.809
- Jorion, P. (2006). Value at risk, the new benchmark for market risk, 3rd Ed., McGraw-Hill, New York.
- Ko, K. Y. and Son, Y. S. (2015). Optimal portfolio and VaR of KOSPI200 using One-factor model. Journal of the Korean Data & Information Science Society, 26, 323-334. https://doi.org/10.7465/jkdi.2015.26.2.323
- Li, D. X. (1999). Value at Risk based on the volatility skewness and kurtosis, RiskMetrics Group, New York.
- Nelsen, R. B. (2006). An Introduction to Copulas, Springer, New York.
- Park, S. and Baek, C. (2014). On multivariate GARCH model selection based on risk management. Journal of the Korean Data & Information Science Society, 25, 1333-1343. https://doi.org/10.7465/jkdi.2014.25.6.1333
- Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21-41. https://doi.org/10.21314/JOR.2000.038
- Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of banking & finance, 26, 1443-1471. https://doi.org/10.1016/S0378-4266(02)00271-6
- Shih, J. H. and Louis, T. A. (1995). Inferences on the association parameter in copula models for bivariate survival data. Biometrics, 51, 1384-1399. https://doi.org/10.2307/2533269
- Sklar, A. (1959). Fonctions de repartition a n dimensions et leurs marges. l'Institut de Statistique de l'Universite de Paris, 8, 229-231.
- Zangari, P. (1996). An improved methodology for measuring VaR. RiskMetrics Monitor, 2, 7-25.
Cited by
- 이변량 왜도, 첨도 그리고 표면그림 vol.28, pp.5, 2017, https://doi.org/10.7465/jkdi.2017.28.5.959