DOI QR코드

DOI QR Code

Comparison of Protein Profiles of Proso Millet (Panicum miliaceum) Seeds of Various Korean Cultivars

  • Roy, Swapan Kumar (Department of Crop Science, Chungbuk National University) ;
  • Kwon, Soo-Jeong (Department of Crop Science, Chungbuk National University) ;
  • Yu, Je-Hyeok (Department of Crop Science, Chungbuk National University) ;
  • Sarker, Kabita (Department of Crop Science, Chungbuk National University) ;
  • Cho, Seong-Woo (Department of Crop Science and Biotechnology, Chonbuk National University) ;
  • Moon, Young-Ja (Department of Food Nutrition and Cookery, Woosong College) ;
  • Jung, Tae-Wook (Rural Development Administration) ;
  • Park, Cheol-Ho (College of Biomedical Science, Kangwon National University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University)
  • 투고 : 2017.01.17
  • 심사 : 2017.02.23
  • 발행 : 2017.03.31

초록

Seed storage proteins are used as carbon and nitrogen sources for the nutritional improvement of seeds. Since the composition of proteins from the Korean cultivars of proso millet is unknown, this study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from proso millet seeds of various cultivars were investigated using proteomic techniques such as 2-D electrophoresis coupled with mass fingerprinting; 1152 (differentially expressed) protein spots were detected on the 2-D gels. Among them, 26 reproducible protein spots were analyzed using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Out of the 26 proteins, 2 proteins were upregulated in all the millet cultivars, while 13 proteins were upregulated and 11 proteins were downregulated in 2 cultivars. Abundance of most of the identified protein species associated with polysaccharide and starch metabolism, transcription, and pathogenesis was significantly enhanced, while that of other protein species involved in glycolysis, stress response, and transduction was severely reduced. Taken together, the results suggest that the differential expression of the proteins from the four millet cultivars may be cultivar-specific. By conducting a proteomic investigation of millet seeds from different cultivars, we sought to better understand the functional categorization of individual proteins on the basis of their molecular functions. We believe that the identified proteins may help in investigating genetic variations in millet cultivars.

키워드

참고문헌

  1. Baltensperger, D., D. J. Lyon, R. Anderson, T. Holman, C. Stymieste, J. Shanahan, L.A. Nelson, K.L. DeBoer, G.L. Hein, and J. Krall. 1995. EC95-137 Producing and Marketing Proso Millet in the High Plains. Historical Materials from University of Nebraska-Lincoln Extension. p.709.
  2. Bourgeois, M., F. Jacquin, V. Savois, N. Sommerer, V. Labas, C. Henry, and J. Burstin. 2009. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics. 9:254-271. https://doi.org/10.1002/pmic.200700903
  3. Bouvier F., N. Linka, J. C. Isner, J. Mutterer, A. P. Weber, and B. Camara. 2006. Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. The Plant Cell. 18:3088-3105. https://doi.org/10.1105/tpc.105.040741
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Brown, L., B. Rosner, W. W. Willett, and F. M. Sacks. 1999. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am. J. Clin. Nutr. 69:30-42. https://doi.org/10.1093/ajcn/69.1.30
  6. Chi, F., P. Yang, F. Han, Y. Jing, and S. Shen. 2010. Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics. 10:1861-1874. https://doi.org/10.1002/pmic.200900694
  7. Chitteti, B. R. and Z. Peng. 2007. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J. Proteome Res. 6:1718-1727. https://doi.org/10.1021/pr060678z
  8. Chronis, D. and H. B. Krishnan. 2003. Sulfur Assimilation in Soybean. Crop Sci. 43:1819-1827. https://doi.org/10.2135/cropsci2003.1819
  9. Crosatti, C., P. P. de Laureto, R. Bassi, and L. Cattivelli. 1999. The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 119:671-680. https://doi.org/10.1104/pp.119.2.671
  10. Ding, C., J. You, S. Wang, Z. Liu, G. Li, Q. Wang, and Y. Ding. 2012. A proteomic approach to analyze nitrogen-and cytokinin-responsive proteins in rice roots. Mol. Biol. Rep. 39:1617-1626. https://doi.org/10.1007/s11033-011-0901-4
  11. Emes, M., C. Bowsher, C. Hedley, M. Burrell, E. Scrase-Field, and I. Tetlow. 2003. Starch synthesis and carbon partitioning in developing endosperm. J. Expt. Bot. 54:569-575. https://doi.org/10.1093/jxb/erg089
  12. Fan, W., W. Cui, X. Li, S. Chen, G. Liu, and S. Shen. 2011. Proteomics analysis of rice seedling responses to ovine saliva. J. Plant Physiol. 168:500-509. https://doi.org/10.1016/j.jplph.2010.08.012
  13. Finnie, C., K. Maeda, O. Ostergaard, K. Bak-Jensen, J. Larsen, and B. Svensson. 2004. Aspects of the barley seed proteome during development and germination. Biochem. Soc. Trans. 32:517-519. https://doi.org/10.1042/bst0320517
  14. Foley, R.C., L. L. Gao, A. Spriggs, L.Y. Soo, D. E. Goggin, P. M. Smith, C. A. Atkins, and K. B. Singh. 2011. Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius. BMC Plant Biol. 11:1. https://doi.org/10.1186/1471-2229-11-1
  15. Gallardo, K., C. Job, S. P. Groot, M. Puype, H. Demol, J. Vandekerckhove, and D. Job. 2001. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126:835-848. https://doi.org/10.1104/pp.126.2.835
  16. Gallardo, K., C. Le Signor, J. Vandekerckhove, R. D. Thompson, and J. Burstin. 2003. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol. 133:664-682. https://doi.org/10.1104/pp.103.025254
  17. Gallo, G., R. Alduina, G. Renzone, J. Thykaer, L. Bianco, A. Eliasson-Lantz, A. Scaloni, and A. M. Puglia. 2010. Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations. Microb. Cell Fact. 9:1. https://doi.org/10.1186/1475-2859-9-1
  18. Georgopoulos, C. and W. Welch. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9:601-634. https://doi.org/10.1146/annurev.cb.09.110193.003125
  19. Guo, S., W. Wharton, P. Moseley, and H. Shi. 2007. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones. 12: 45-254.
  20. Hajduch, M., J. E. Casteel, K. E. Hurrelmeyer, Z. Song, G. K. Agrawal, and J. J. Thelen. 2006. Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol. 141:32-46. https://doi.org/10.1104/pp.105.075390
  21. Han, C., X. Yin, D. He, and P. Yang. 2013. Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PloS One. 8:e56947. https://doi.org/10.1371/journal.pone.0056947
  22. He, D., C. Han, J. Yao, S. Shen, and P. Yang. 2011. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics. 11:2693-2713. https://doi.org/10.1002/pmic.201000598
  23. He, D. and P. Yang. 2013. Proteomics of rice seed germination. Front. Plant Sci. 4:10.3389.
  24. Helm, J. L., A. A. Schneiter, and L. Johnson. 1990. Proso millet in North Dakota. NDSU Extension Service -North Dakota State University (USA).
  25. Herman, E. M. and B. A. Larkins. 1999. Protein storage bodies and vacuoles. The Plant Cell. 11:601-613. https://doi.org/10.1105/tpc.11.4.601
  26. Islam, N., S. H. Woo, H. Tsujimoto, H. Kawasaki, and H. Hirano. 2002. Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L.). Proteomics. 2:1146-1155. https://doi.org/10.1002/1615-9861(200209)2:9<1146::AID-PROT1146>3.0.CO;2-6
  27. Islam, S., G. Yan, R. Appels, and W. Ma. 2012. Comparative proteome analysis of seed storage and allergenic proteins among four narrow-leafed lupin cultivars. Food Chem. 135:1230-1238. https://doi.org/10.1016/j.foodchem.2012.05.081
  28. Jha, B., N. P. Singh, and A. Mishra. 2012. Proteome profiling of seed storage proteins reveals the nutritional potential of Salicornia brachiata Roxb., an extreme halophyte. J. Agri. Food Chem. 60:4320-4326. https://doi.org/10.1021/jf203632v
  29. Kamal, A. H. M., I. D. Jang, D. E. Kim, T. Suzuki, K. Y. Chung, J. S. Choi, M. S. Lee, C. H. Park, S. U. Park, S. H. Lee, and H. S. Jeong. 2011. Proteomics analysis of embryo and endosperm from mature common buckwheat seeds. J. Plant Biol. 54:81-91. https://doi.org/10.1007/s12374-010-9143-6
  30. Koo, S. C., D. W. Bae, J. S. Seo, K. M. Park, M. S. Choi, S. H. Kim, S. I. Shim, K. M. Kim, J. I. Chung, and M. C. Kim. 2011. Proteomic analysis of seed storage proteins in low allergenic soybean accession. J. Korean Soc. Appl. Biol. Chem. 54:332-339. https://doi.org/10.3839/jksabc.2011.053
  31. Kottapalli, K. R., P. Payton, R. Rakwal, G. K. Agrawal, J. Shibato, M. Burow, N. Puppala. 2008. Proteomics analysis of mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional, and allergenic proteins. Plant Sci. 175:321-329. https://doi.org/10.1016/j.plantsci.2008.05.005
  32. Li, W., Y. Gao, H. Xu, Y. Zhang, and J. Wang. 2012. A proteomic analysis of seed development in Brassica campestri L. PloS One. 7:e50290. https://doi.org/10.1371/journal.pone.0050290
  33. Macdonald, F. D. and J. Preiss. 1983. Solubilization of the starch-granule-bound starch synthase of normal maize kernels. Plant Physiol. 73:175-178. https://doi.org/10.1104/pp.73.1.175
  34. Majoul, T., E. Bancel, E. Triboi, J. Ben Hamida, and G. Branlard. 2003. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from total endosperm. Proteomics. 3:175-183. https://doi.org/10.1002/pmic.200390026
  35. Mal, B., S. Padulosi, and S. B. Ravi. 2010. Minor millets in South Asia: learnings from IFAD-NUS Project in India and Nepal. Bioversity International, Maccarese, Rome, Italy and the MS Swaminathan Research Foundation, Chennai, India.
  36. Marcon, A. 1994. Wheat streak mosaic virus resistance in foxtail millet, Setaria italica, L Beauv., and factors related to resistance
  37. Marlett, J. A., M. I. McBurney, and J. L. Slavin. 2002. Position ofthe American Dietetic Association: health implications ofdietary fiber. J. Am. Diet. Assoc. 102:993-1000. https://doi.org/10.1016/S0002-8223(02)90228-2
  38. Mesa-Stonestreet, D., N. Jhoe, S. Alavi, and S. R. Bean. 2010. Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins. J. Food Sci. 75:R90-R104. https://doi.org/10.1111/j.1750-3841.2009.01431.x
  39. Nwugo, C. C. and A. J. Huerta. 2010. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J. Proteome Res. 10:518-528.
  40. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021.
  41. Oge, L., G. Bourdais, J. Bove, B. Collet, B. Godin, F. Granier, J.-P. Boutin, D. Job, M. Jullien, and P. Grappin. 2008. Protein repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis. The Plant Cell. 20:3022-3037. https://doi.org/10.1105/tpc.108.058479
  42. Pereira, M. A., E. O'Reilly, K. Augustsson, G.E. Fraser, U. Goldbourt, B.L. Heitmann, G. Hallmans, P. Knekt, S. Liu, P. Pietinen, and D. Spiegelman. 2004. Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Archives of Internal Medicine. 164: 370-376. https://doi.org/10.1001/archinte.164.4.370
  43. Rajjou, L., K. Gallardo, I. Debeaujon, J. Vandekerckhove, C. Job, and D. Job. 2004. The effect of $\alpha$-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol. 134:1598-1613. https://doi.org/10.1104/pp.103.036293
  44. Rajput, S. G. 2015. Development and utilization of genomic resources for genetic improvement of proso millet (Panicum miliaceum L.). ETD collection for University of Nebraska-Lincoln. AAI3716450.
  45. Sahnoun-Abid, I., G. Recorbet, H. Zuber, N. Sommerer, D. Centeno, E. Dumas-Gaudot, and S. Smiti-Aschi. 2009. Proteomic characterisation of subclover seed storage proteins during germination. J. Sci. Food Agri. 89:1787-1801. https://doi.org/10.1002/jsfa.3666
  46. Saleh, A. S., Q. Zhang, J. Chen, and Q. Shen. 2013. Millet grains: Nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 12:281-295. https://doi.org/10.1111/1541-4337.12012
  47. Sano, N., S. Masaki, T. Tanabata, T. Yamada, T. Hirasawa, and M. Kanekatsu. 2013. Proteomic analysis of stress-related proteins in rice seeds during the desiccation phase of grain filling. Plant Biotechnol. 30:147-156. https://doi.org/10.5511/plantbiotechnology.13.0207a
  48. Schwender, J., F. Goffman, J. B. Ohlrogge, and Y. Shachar-Hill. 2004. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779-782. https://doi.org/10.1038/nature03145
  49. Skylas, D. J., L. Copeland, W. G. Rathmell, and C. W. Wrigley. 2001. The wheat-grain proteome as a basis for more efficient cultivar identification. Proteomics. 1:1542-1546. https://doi.org/10.1002/1615-9861(200111)1:12<1542::AID-PROT1542>3.0.CO;2-K
  50. Smidansky, E. D., F. D. Meyer, B. Blakeslee, T. E. Weglarz, T. W. Greene, and M. J. Giroux. 2007. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta. 225:965-976. https://doi.org/10.1007/s00425-006-0400-3
  51. Sun, W., M. Van Montagu, and N. Verbruggen. 2002. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1577:1-9. https://doi.org/10.1016/S0167-4781(02)00417-7
  52. Torabi, S., M. Wissuwa, M. Heidari, M.R. Naghavi, K. Gilany, M.R. Hajirezaei, M. Omidi, B. Yazdi-Samadi, A. M. Ismail, and G.H. Salekdeh. 2009. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics. 9:159-170. https://doi.org/10.1002/pmic.200800350
  53. Veeranagamallaiah, G., G. Jyothsnakumari, M. Thippeswamy, P.C.O. Reddy, G.K. Surabhi, G. Sriranganayakulu, Y. Mahesh, B. Rajasekhar, C. Madhurarekha, and C. Sudhakar. 2008. Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci. 175:631-641. https://doi.org/10.1016/j.plantsci.2008.06.017
  54. Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Biol. 42:579-620. https://doi.org/10.1146/annurev.pp.42.060191.003051
  55. Wang, W, B. Vinocur, O. Shoseyov, and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244-252. https://doi.org/10.1016/j.tplants.2004.03.006
  56. Wehmeyer, N. and E. Vierling. 2000. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 122:1099-1108. https://doi.org/10.1104/pp.122.4.1099
  57. Xu, C. and B. Huang. 2010. Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J. Plant Physiol. 167:1477-1485. https://doi.org/10.1016/j.jplph.2010.05.006
  58. Yacoubi, R., C. Job, M. Belghazi, W. Chaibi, and D. Job. 2011. Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. J. Proteome Res. 10:3891-3903. https://doi.org/10.1021/pr101274f
  59. Yang, M. F., Y. J Liu, Y. Liu, H. Chen, F. Chen, and S. H. Shen. 2009. Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J. Proteome Res. 8:1441-1451. https://doi.org/10.1021/pr800799s
  60. Yang, P., H. Chen, Y. Liang, and S. Shen. (2007a). Proteomic analysis of de-etiolated rice seedlings upon exposure to light. Proteomics. 7:2459-2468. https://doi.org/10.1002/pmic.200600215
  61. Yang, P., Y. Liang, S. Shen, and T. Kuang. 2006. Proteome analysis of rice uppermost internodes at the milky stage. Proteomics. 6:3330-3338. https://doi.org/10.1002/pmic.200500260
  62. Yang, Q., Y. Wang, J. Zhang, W. Shi, C. Qian, and X. Peng. 2007b. Identification of aluminum-responsive proteins in rice roots by a proteomic approach: Cysteine synthase as a key player in Al response. Proteomics. 7:737-749. https://doi.org/10.1002/pmic.200600703

피인용 문헌

  1. Omics for proso millet genetic improvement vol.63, pp.3, 2017, https://doi.org/10.1007/s13237-020-00339-8
  2. Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security vol.22, pp.15, 2017, https://doi.org/10.3390/ijms22158093