References
- Pallozzi, V., Carlo, A. D., Bocci, E., Villarini, M., Foscolo, P. U., and Carlini, M., "Performance Evaluation at Different Process Parameters of an Innovative Prototype of Biomass Gasification System Aimed to Hydrogen Production," Energy Convers. Manage., 130, 34-43 (2016). https://doi.org/10.1016/j.enconman.2016.10.039
- Jadhav, H., Singh, A. K., Patel, N., Fernandes, R., Gupta, S., Kothari, D. C., and Miotello, A., "Pulsed Laser Doposition of Nanostructured Co-B-O Thin Films as Efficient Catalyst for Hydrogen Production," Appl. Surf. Sci., 387, 358-365 (2016). https://doi.org/10.1016/j.apsusc.2016.06.118
- Gomes, S. R., Bion, N., Duprez, D., and Epron, F., "Hydrogen Production from Hydrocarbons over Rh Supported on Ce-based Oxides for Automotive Applications," Appl. Catal. B, 197, 138-145 (2016). https://doi.org/10.1016/j.apcatb.2016.01.022
-
Gonzalez-Gil, R., Herrera, C., Larrubia, M. A., Marino, F., Laborde, M., and Alemany, L. J., "Hydrogen Production by Ethanol Steam Reforming over Multimetallic RhCe/
$Al_2O_3$ Structured Catalysts. Pilot-Scale Study," Int. J. Hydrogen Energy, 41, 16786-16796 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.234 - Tufa, R. A., Rugiero, E., Chanda, D., Hnat, J., van Baak, W., Veerman, J., Fontananova, E., Profio, G. D., Drioli, E., Bouzek, K., and Curcio, E., "Salinity Gradient Power-Reverse Electrodialysis and Alkaline Polymer Electrolyte Water Electrolysis for Hydrogen Production," J. Membr. Sci., 514, 155-164 (2016). https://doi.org/10.1016/j.memsci.2016.04.067
- Boudjemaa, A., Popescu, I., Juzsakova, T., Kebir, M., Helaili, N., Bachari, K., and Marcu, I.-C., "M-substituted (M = Co, Ni and Cu) Zinc Ferrite Photo-Catalysts for Hydrogen Production by Water Photo-Reduction," Int. J. Hydrogen Energy, 41, 11108-11118 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.088
-
Boudjemaa, A., Rebahi, A., Terfassa, B., Chebout, R., Mokrani, T., Bachari, K., and Coville, N. J., "
$Fe_2O_3$ /Carbon Spheres for Efficient Photo-Catalytic Hydrogen Production from Water and Under Visible Light Irradiation," Sol. Energy Mater. Sol. Cells, 140, 405-411 (2015). https://doi.org/10.1016/j.solmat.2015.04.036 -
Wang, F., Jin, Z., Jiang, Y., Backus, E. H. G., Bonn, M., Lou, S. N., Turchinovich, D., and Amal, R., "Probing the Charge Separation Process on
$In_2S_3$ /Pt-$TiO_2$ Nanocomposites for Boosted Visible-Light Photocatalytic Hydrogen Production," Appl. Catal. B, 198, 25-31 (2016). https://doi.org/10.1016/j.apcatb.2016.05.048 -
Iervolino, G., Vaiano, V., Murcia, J. J., Rizzo, L., Ventre, G., Pepe, G., Campiglia, P., Hidalgo, M. C., Navio, J. A., and Sannino, D., "Photocatalytic Hydrogen Production from Degradation of Glucose over Fluorinated and Platinized
$TiO_2$ Catalysts," J. Catal., 339, 47-56 (2016). https://doi.org/10.1016/j.jcat.2016.03.032 -
Liu, Y., Wang, Z., and Huang, W., "Influences of
$TiO_2$ Phase Structures on the Structures and Photocatalytic Hydrogen Production of$CuO_x$ /$TiO_2$ Photocatalysts," Appl. Surf. Sci., 389, 760-767 (2016). https://doi.org/10.1016/j.apsusc.2016.07.173 -
Jang, J. S., Borse, P. H., Lee, J. S., Lim, K. T., Jung, O. -S., Jeong, E. D., Bae, J. S., and Kim, H. G., "Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-Doped
$CaTiO_3$ ," Bull. Korean Chem. Soc., 32, 95-99 (2011). https://doi.org/10.5012/bkcs.2011.32.1.95 -
Puangpetch, T., Sreethawong, T., Yoshikawa, S., and Chavadej, S., "Hydrogen Production from Photocatalytic Water Splitting over Mesoporous-Assembled
$SrTiO_3$ Nanocrystal-Based Photocatalysts," J. Mol. Catal. A: Chem., 312, 97-106 (2009). https://doi.org/10.1016/j.molcata.2009.07.012 -
Sharma, D., Upadhyay, S., Satsangi, V. R., Shrivastav, R., Waghmare, U. V., and Dass, S., "Nanostructured
$BaTiO_3$ /$Cu_2O$ Heterojunction with Improved Photoelectrochemical Activity for$H_2$ Evolution: Experimental and First-Principles Analysis," Appl. Catal. B, 189, 75-85 (2016). https://doi.org/10.1016/j.apcatb.2016.02.037 -
Lozano-Sanchez, L. M., Mendez-Medrano, M. G., Colbeau-Justin, C., Rodriguez-Lopez, J. L., Hernandez-Uresti, D. B., and Obregon, S., "Long-Lived Photoinduced Charge-Carriers in
$Er^{3+}$ Doped$CaTiO_3$ for Photocatalytic$H_2$ Production under UV Irradiation," Catal. Commun., 84, 36-39 (2016). https://doi.org/10.1016/j.catcom.2016.06.002 -
Zou, J.-P., Zhang, L.-Z., Luo, S.-L., Leng, L.-H., Luo, X.-B., Zhang, M.-J., Luo, Y., and Guo, G.-C., "Preparation and Photocatalytic Activities of Two New Zn-doped
$SrTiO_3$ and$BaTiO_3$ Photocatalysts for Hydrogen Production from Water without Cocatalysts Loading," Int. J. Hydrogen Energy, 37, 17068-17077 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.133 -
He, G.-L., Zhong, Y.-H., Chen, M.-J., Li, X., Fang, Y.-P., and Xu, Y.-H., "One-pot Hydrothermal Synthesis of
$SrTiO_3$ -Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for Hydrogen Production," J. Mol. Catal. A: Chem., 423, 70-76 (2016). https://doi.org/10.1016/j.molcata.2016.05.025 -
Bui, D.-N., Mu, J., Wang, L., Kang, S.-Z., and Li, X., "Preparation of Cu-Loaded
$SrTiO_3$ Nanoparticles and their Photocatalytic Activity for Hydrogen Evolution from Methanol Aqueous Solution," Appl. Surf. Sci., 274, 328-333 (2013). https://doi.org/10.1016/j.apsusc.2013.03.054 -
Shen, P., Lofaro Jr, J. C., Woerner, W. R., White, M. G., Su, D., and Orlov, A., "Photocatalytic Activity of Hydrogen Evolution over Rh Doped
$SrTiO_3$ Prepared by Polymerizable Complex Method," Chem. Eng. J., 223, 200-208 (2013). https://doi.org/10.1016/j.cej.2013.03.030 -
Kang, H. W., and Park, S. B., "Effects of Mo Sources on Mo Doped
$SrTiO_3$ Powder Prepared by Spray Pyrolysis for$H_2$ Evolution under Visible Light Irradiation," Mater. Sci. Eng., B, 211, 67-74 (2016). https://doi.org/10.1016/j.mseb.2016.06.006 -
Kang, H. W., and Park, S. B., "Improved Performance of Tri-Doped Photocatalyst
$SrTiO_3$ :Rh/Ta/F for$H_2$ Evolution Under Visible Light Irradiation," Int. J. Hydrogen Energy, 41, 13970-13978 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.213 -
Yu, H., Yan, S., Li, Z., Yu, T., and Zou, Z., "Efficient Visible-Light-Driven Photocatalytic
$H_2$ Production over Cr/N-Codoped$SrTiO_3$ ," Int. J. Hydrogen Energy, 37, 12120-12127 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.097 - Albuquerque, E. L., and Vasconcelos, M. S., "Structural, Electronics and Optical Properties of CaO," J. Phys. Conf. Ser., 100, 42006-42010 (2008). https://doi.org/10.1088/1742-6596/100/4/042006
-
Khan, I., Ahmad, I., Amin, B., Murtaza, G., and Ali, Z., "Bandgap Engineering of
$Cd_{1-x}Sr_xO$ ," Physica B, 406, 2509-2514 (2011). https://doi.org/10.1016/j.physb.2011.03.042 - Demko, A. A., and Navrotsky, A., "Materials Fundamentals of Gate Dielectrics," Springer, 1-310 (2005).
-
Yan, Z., Zhuxia, Z., Tianbao, Li., Xuguang, L., and Bingshe, X., "XPS and XRD Study of
$FeCl_3$ -Graphite Intercalation Compounds Prepared by Arc Discharge in Aqueous Solution," Spectrochim. Acta, Part A, 70, 1060-1064 (2008). https://doi.org/10.1016/j.saa.2007.10.031 -
Shukla, S., Chaudhary, S., Umar, A., Chaudhary, G. R., and Mehta, S. K., "Dodecyl Ethyl Dimethyl Ammonium Bromide Capped
$WO_3$ Nanoparticles: Efficient Scaffolds for Chemical Sensing and Environmental Remediation," Dalton Trans., 44, 1725117260 (2015). https://doi.org/10.1039/C5DT02853A