DOI QR코드

DOI QR Code

Effect of Ni Addition on ATiO3 (A = Ca, Sr, Ba) Perovskite Photocatalyst for Hydrogen Production from Methanol Photolysis

메탄올 광분해 수소제조를 위한 ATiO3 (A = Ca, Sr, Ba) Perovskite 광촉매의 Ni 첨가 영향

  • Kwak, Byeong Sub (Department of Chemistry, College of Science, Yeungnam University) ;
  • Park, No-Kuk (School of Chemical Engineering, College of Engineering, Yeungnam University) ;
  • Lee, Tae Jin (School of Chemical Engineering, College of Engineering, Yeungnam University) ;
  • Lee, Sang Tae (Wooshin Industrial Co. LTD.) ;
  • Kang, Misook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2016.11.08
  • Accepted : 2016.12.04
  • Published : 2017.03.31

Abstract

In this study, $ATiO_3$ (A = Ca, Sr, Ba) perovskite, which is the widely known for non $TiO_2$ photocatalysts, were synthesized using sol-gel method. And Ni was added at the A site of $ATiO_3$ by using that it is easy to incorporate. The physicochemical characteristics of the obtained $ATiO_3$ and Ni-$ATiO_3$ particles were confirmed using the X-ray diffraction (XRD) UV-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), the $N_2$ adsorption-desorption isotherm measurement, and X-ray photoelectron spectroscopy (XPS). The $H_2$ was produced using the photolysis of MeOH. Using the Ni-$ATiO_3$ photocatalysts, $H_2$ production was higher than using the $ATiO_3$ photocatalysts. Especially, $273.84mmolg^{-1}$ $H_2$ was produced after 24 h reaction over the Ni-$SrTiO_3$. Also in the water (0.1 M KOH) with the Ni-$SrTiO_3$, $H_2$ production was $961.51mmolg^{-1}$ after 24 h reaction.

본 연구는 비 $TiO_2$ 계 광촉매 중 가장 널리 알려져 있는 $ATiO_3$ (A = Ca, Sr, Ba) perovskite를 sol-gel 법을 이용해 합성하였고, 골격치환이 용이한 점을 이용해 A site에 Ni을 첨가한 입자를 합성하였다. 합성한 $ATiO_3$와 Ni-$ATiO_3$ 입자의 불리화학적 특성은 X-선 회절분석(XRD), 자외선-가시선 분광광도계(UV-visible spectroscopy), 주사전자현미경 (SEM), 에너지분산형 분광분석법(EDS), 질소 등온 흡 탈착실험, X선 광전자분광법(XPS)을 이용해 확인하였다. 수소제조는 메탄올을 광분해하여 얻었으며, $ATiO_3$ 보다 Ni-$ATiO_3$ 촉매에서 높은 수소발생량을 나타내었다. 특히 Ni-$SrTiO_3$ 촉매를 사용하였을 때 24시간 반응 후 $273.84mmolg^{-1}$의 수소가 발생하였다. 또한 Ni-$SrTiO_3$ 촉매는 물(0.1 M KOH)을 분해하였을 때에도 높은 수소 제조 성능을 나타냈으며, 24시간 반응 후 $961.51mmolg^{-1}$의 수소가 발생한 것을 확인하였다.

Keywords

References

  1. Pallozzi, V., Carlo, A. D., Bocci, E., Villarini, M., Foscolo, P. U., and Carlini, M., "Performance Evaluation at Different Process Parameters of an Innovative Prototype of Biomass Gasification System Aimed to Hydrogen Production," Energy Convers. Manage., 130, 34-43 (2016). https://doi.org/10.1016/j.enconman.2016.10.039
  2. Jadhav, H., Singh, A. K., Patel, N., Fernandes, R., Gupta, S., Kothari, D. C., and Miotello, A., "Pulsed Laser Doposition of Nanostructured Co-B-O Thin Films as Efficient Catalyst for Hydrogen Production," Appl. Surf. Sci., 387, 358-365 (2016). https://doi.org/10.1016/j.apsusc.2016.06.118
  3. Gomes, S. R., Bion, N., Duprez, D., and Epron, F., "Hydrogen Production from Hydrocarbons over Rh Supported on Ce-based Oxides for Automotive Applications," Appl. Catal. B, 197, 138-145 (2016). https://doi.org/10.1016/j.apcatb.2016.01.022
  4. Gonzalez-Gil, R., Herrera, C., Larrubia, M. A., Marino, F., Laborde, M., and Alemany, L. J., "Hydrogen Production by Ethanol Steam Reforming over Multimetallic RhCe/$Al_2O_3$ Structured Catalysts. Pilot-Scale Study," Int. J. Hydrogen Energy, 41, 16786-16796 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.234
  5. Tufa, R. A., Rugiero, E., Chanda, D., Hnat, J., van Baak, W., Veerman, J., Fontananova, E., Profio, G. D., Drioli, E., Bouzek, K., and Curcio, E., "Salinity Gradient Power-Reverse Electrodialysis and Alkaline Polymer Electrolyte Water Electrolysis for Hydrogen Production," J. Membr. Sci., 514, 155-164 (2016). https://doi.org/10.1016/j.memsci.2016.04.067
  6. Boudjemaa, A., Popescu, I., Juzsakova, T., Kebir, M., Helaili, N., Bachari, K., and Marcu, I.-C., "M-substituted (M = Co, Ni and Cu) Zinc Ferrite Photo-Catalysts for Hydrogen Production by Water Photo-Reduction," Int. J. Hydrogen Energy, 41, 11108-11118 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.088
  7. Boudjemaa, A., Rebahi, A., Terfassa, B., Chebout, R., Mokrani, T., Bachari, K., and Coville, N. J., "$Fe_2O_3$/Carbon Spheres for Efficient Photo-Catalytic Hydrogen Production from Water and Under Visible Light Irradiation," Sol. Energy Mater. Sol. Cells, 140, 405-411 (2015). https://doi.org/10.1016/j.solmat.2015.04.036
  8. Wang, F., Jin, Z., Jiang, Y., Backus, E. H. G., Bonn, M., Lou, S. N., Turchinovich, D., and Amal, R., "Probing the Charge Separation Process on $In_2S_3$/Pt-$TiO_2$ Nanocomposites for Boosted Visible-Light Photocatalytic Hydrogen Production," Appl. Catal. B, 198, 25-31 (2016). https://doi.org/10.1016/j.apcatb.2016.05.048
  9. Iervolino, G., Vaiano, V., Murcia, J. J., Rizzo, L., Ventre, G., Pepe, G., Campiglia, P., Hidalgo, M. C., Navio, J. A., and Sannino, D., "Photocatalytic Hydrogen Production from Degradation of Glucose over Fluorinated and Platinized $TiO_2$ Catalysts," J. Catal., 339, 47-56 (2016). https://doi.org/10.1016/j.jcat.2016.03.032
  10. Liu, Y., Wang, Z., and Huang, W., "Influences of $TiO_2$ Phase Structures on the Structures and Photocatalytic Hydrogen Production of $CuO_x$/$TiO_2$ Photocatalysts," Appl. Surf. Sci., 389, 760-767 (2016). https://doi.org/10.1016/j.apsusc.2016.07.173
  11. Jang, J. S., Borse, P. H., Lee, J. S., Lim, K. T., Jung, O. -S., Jeong, E. D., Bae, J. S., and Kim, H. G., "Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-Doped $CaTiO_3$," Bull. Korean Chem. Soc., 32, 95-99 (2011). https://doi.org/10.5012/bkcs.2011.32.1.95
  12. Puangpetch, T., Sreethawong, T., Yoshikawa, S., and Chavadej, S., "Hydrogen Production from Photocatalytic Water Splitting over Mesoporous-Assembled $SrTiO_3$ Nanocrystal-Based Photocatalysts," J. Mol. Catal. A: Chem., 312, 97-106 (2009). https://doi.org/10.1016/j.molcata.2009.07.012
  13. Sharma, D., Upadhyay, S., Satsangi, V. R., Shrivastav, R., Waghmare, U. V., and Dass, S., "Nanostructured $BaTiO_3$/$Cu_2O$ Heterojunction with Improved Photoelectrochemical Activity for $H_2$ Evolution: Experimental and First-Principles Analysis," Appl. Catal. B, 189, 75-85 (2016). https://doi.org/10.1016/j.apcatb.2016.02.037
  14. Lozano-Sanchez, L. M., Mendez-Medrano, M. G., Colbeau-Justin, C., Rodriguez-Lopez, J. L., Hernandez-Uresti, D. B., and Obregon, S., "Long-Lived Photoinduced Charge-Carriers in $Er^{3+}$ Doped $CaTiO_3$ for Photocatalytic $H_2$ Production under UV Irradiation," Catal. Commun., 84, 36-39 (2016). https://doi.org/10.1016/j.catcom.2016.06.002
  15. Zou, J.-P., Zhang, L.-Z., Luo, S.-L., Leng, L.-H., Luo, X.-B., Zhang, M.-J., Luo, Y., and Guo, G.-C., "Preparation and Photocatalytic Activities of Two New Zn-doped $SrTiO_3$ and $BaTiO_3$ Photocatalysts for Hydrogen Production from Water without Cocatalysts Loading," Int. J. Hydrogen Energy, 37, 17068-17077 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.133
  16. He, G.-L., Zhong, Y.-H., Chen, M.-J., Li, X., Fang, Y.-P., and Xu, Y.-H., "One-pot Hydrothermal Synthesis of $SrTiO_3$-Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for Hydrogen Production," J. Mol. Catal. A: Chem., 423, 70-76 (2016). https://doi.org/10.1016/j.molcata.2016.05.025
  17. Bui, D.-N., Mu, J., Wang, L., Kang, S.-Z., and Li, X., "Preparation of Cu-Loaded $SrTiO_3$ Nanoparticles and their Photocatalytic Activity for Hydrogen Evolution from Methanol Aqueous Solution," Appl. Surf. Sci., 274, 328-333 (2013). https://doi.org/10.1016/j.apsusc.2013.03.054
  18. Shen, P., Lofaro Jr, J. C., Woerner, W. R., White, M. G., Su, D., and Orlov, A., "Photocatalytic Activity of Hydrogen Evolution over Rh Doped $SrTiO_3$ Prepared by Polymerizable Complex Method," Chem. Eng. J., 223, 200-208 (2013). https://doi.org/10.1016/j.cej.2013.03.030
  19. Kang, H. W., and Park, S. B., "Effects of Mo Sources on Mo Doped $SrTiO_3$ Powder Prepared by Spray Pyrolysis for $H_2$ Evolution under Visible Light Irradiation," Mater. Sci. Eng., B, 211, 67-74 (2016). https://doi.org/10.1016/j.mseb.2016.06.006
  20. Kang, H. W., and Park, S. B., "Improved Performance of Tri-Doped Photocatalyst $SrTiO_3$:Rh/Ta/F for $H_2$ Evolution Under Visible Light Irradiation," Int. J. Hydrogen Energy, 41, 13970-13978 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.213
  21. Yu, H., Yan, S., Li, Z., Yu, T., and Zou, Z., "Efficient Visible-Light-Driven Photocatalytic $H_2$ Production over Cr/N-Codoped $SrTiO_3$," Int. J. Hydrogen Energy, 37, 12120-12127 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.097
  22. Albuquerque, E. L., and Vasconcelos, M. S., "Structural, Electronics and Optical Properties of CaO," J. Phys. Conf. Ser., 100, 42006-42010 (2008). https://doi.org/10.1088/1742-6596/100/4/042006
  23. Khan, I., Ahmad, I., Amin, B., Murtaza, G., and Ali, Z., "Bandgap Engineering of $Cd_{1-x}Sr_xO$," Physica B, 406, 2509-2514 (2011). https://doi.org/10.1016/j.physb.2011.03.042
  24. Demko, A. A., and Navrotsky, A., "Materials Fundamentals of Gate Dielectrics," Springer, 1-310 (2005).
  25. Yan, Z., Zhuxia, Z., Tianbao, Li., Xuguang, L., and Bingshe, X., "XPS and XRD Study of $FeCl_3$-Graphite Intercalation Compounds Prepared by Arc Discharge in Aqueous Solution," Spectrochim. Acta, Part A, 70, 1060-1064 (2008). https://doi.org/10.1016/j.saa.2007.10.031
  26. Shukla, S., Chaudhary, S., Umar, A., Chaudhary, G. R., and Mehta, S. K., "Dodecyl Ethyl Dimethyl Ammonium Bromide Capped $WO_3$ Nanoparticles: Efficient Scaffolds for Chemical Sensing and Environmental Remediation," Dalton Trans., 44, 1725117260 (2015). https://doi.org/10.1039/C5DT02853A