DOI QR코드

DOI QR Code

Anti-inflammatory Effects of Amelanchier asiatica Fruits Ethanol Extract

채진목 에탄올 추출물의 항염증 효과 검증

  • Lee, Jin-Young (Department of Herbal Cosmetic Science, Hoseo University) ;
  • Yoo, Dan-Hee (Department of Herbal Cosmetic Science, Hoseo University) ;
  • Joo, Da Hye (Department of Herbal Cosmetic Science, Hoseo University) ;
  • Kim, So-Ra (Department of Herbal Cosmetic Science, Hoseo University) ;
  • Jo, Hui-Seon (Gyeonggi-do Forest Environment Research Institute) ;
  • Joo, Sung-Hyun (Department of forestry, Kyungpook National University) ;
  • Chae, Jung-Woo (Gyeonggi-do Forest Environment Research Institute)
  • 이진영 (호서대학교 한방화장품과학과) ;
  • 유단희 (호서대학교 한방화장품과학과) ;
  • 주다혜 (호서대학교 한방화장품과학과) ;
  • 김소라 (호서대학교 한방화장품과학과) ;
  • 조희선 ((재)경기도산림환경연구소) ;
  • 주성현 (경북대학교 임학과) ;
  • 채정우 ((재)경기도산림환경연구소)
  • Received : 2016.10.27
  • Accepted : 2017.03.24
  • Published : 2017.03.31

Abstract

This study investigated the anti-inflammatory activities and cell viability of Amelanchier asiatica (A. asiatica) 70% ethanol extracts against RAW 264.7 cells induced by lipopolysaccharide (LPS). Cell toxicity test on macrophage cells (RAW 264.7) was performed by 3-[4,5-dimethyl-thiazol-2-yl]-2, 5-diphenyl-tetrazoliumbromide (MTT) assay and results showed 96% cell viability at $1,000{\mu}g/mL$ concentration. Anti-inflammatory activity was examined via the inhibitory tests on the production of LPS induced NO in RAW 264.7 cells by Griess assay. The result showed that the extract inhibited NO production in concentration dependent manner. The iNOS and COX-2 protein expression inhibitory effects were confirmed by western blot and by reverse transcription-polymerase chain reaction (RT-PCR). From the former they were decreased by 84.3%, 56.2% at $500{\mu}g/mL$ concentration, respectively, and from the latter decreased by 89.8%, 84.9% at $500{\mu}g/mL$, respectively. In conclusion, this study showed the anti-inflammatory effects of A. asiatica extracts. Thus, this could be applied to an anti-inflammatory agent.

본 연구에서는 채진목의 항염증 효과를 알아보기 위하여 LPS로 염증을 유도한 RAW 264.7 세포에 대한 채진목 70% 에탄올 추출물의 효과를 살펴보았다. 채진목 70% 에탄올 추출물의 대식세포에서의 세포 독성 측정을 MTT assay를 수행하였다. 세포 독성을 측정한 결과, $1,000{\mu}g/mL$의 농도에서 96%의 세포 생존율을 나타내었다. 항염증 활성을 효과적으로 검증하기 위해, LPS로 유도된 대식세포 내 NO 생산을 억제하는 효과를 Griess의 방법으로 조사하였다. 그 결과, 채진목 70% 에탄올 추출물에서 NO의 생성이 농도 의존적으로 저해되었음을 확인하였다. 채진목 70% 에탄올 추출물을 western blot을 이용하여 단백질 발현을 측정한 결과 처리한 세포군에서 농도가 증가함에 따라 iNOS와 COX-2의 단백질 발현양이 감소하여 최고 농도인 $500{\mu}g/mL$에서 각각 84.3%, 56.2%의 발현 억제를 보여주었다. Reverse transcription-polymerase chain reaction (RT-PCR)을 통하여 mRNA 발현양을 측정한 결과 iNOS와 COX-2의 mRNA 발현양이 감소하여 $500{\mu}g/mL$ 농도에서 89.8%, 84.9%로 나타내었다. 이러한 결과로 보아 채진목 70% 에탄올 추출물의 항염증에 관한 그 효능을 확인할 수 있었고, 따라서 채진목 70% 에탄올 추출물이 천연 항염증 소재로써 가능성이 있다고 판단된다.

Keywords

References

  1. D. H. Jeong, K. B. W. R. Kim, B. K. Kang, S. A. Jung, H. J. Kim, H. Y. Jeong, S. W. Bark, and D. H. Ahn, Anti-inflammatory activity of the water extract of Sargassum fulvellum, KSBB Journal, 27(6), 325 (2012). https://doi.org/10.7841/ksbbj.2012.27.6.325
  2. Y. Heo and H. A. Kim, Correlation between skin prick test and enzyme-linked immunosorbent assay using serum for identification of subjects positive to major respiratory allergens, J. Env. Hlth. Sci., 34(5), 369 (2008).
  3. D. H. Jeong, K. B. W. R. Kim, B. K. Kang, S. A. Jung, H. J. Kim, H. Y. Jeong, S. W. Bark, and D. H. Ahn, Anti-inflammatory activity of the Undaria pinnatifida water extract, J. Appl. Biol. Che., 55(4), 221 (2012). https://doi.org/10.3839/jabc.2012.035
  4. J. K. Kundu and Y. J. Surh, Gearing the journey to cancer, Mutat. Res., 659(1-2), 15 (2008). https://doi.org/10.1016/j.mrrev.2008.03.002
  5. M. Miyataka, K. A. Rich, M. Ingram, T. Yamamoto, and R. J. Bing, Nitric oxide, anti-inflammatory drugs on renal prostaglandins and cyclooxygenase-2, Hypertension, 39(3), 785 (2002). https://doi.org/10.1161/hy0302.105689
  6. D. J. Stuehr, H. J. Cho, N. S. Kwon, M. F. Weise, and C. F. Nathan, Purification and characteriazation of the cytokine-induced macrophage nitric oxide synthase: and FAD and FMN containing flavoprotein, Proc. Natl. Acad. Sci., 88(17), 7773 (1991). https://doi.org/10.1073/pnas.88.17.7773
  7. G. H. Park, J. Y. Lee, D. H. Kim, Y. J. Cho, and B. J. An, Anti-oxidant and antiinflammatory effects of Rosa multiflora root, J. Life Sci., 21(8), 1120 (2011). https://doi.org/10.5352/JLS.2011.21.8.1120
  8. J. Ge, D. Wang, R. He, H. Zhu, Y. Wang, and S. He, Medicinal herb research: serum pharmacological method and plasma pharmacological method, Biol. Pharm. Bull., 33(9), 1459 (2010). https://doi.org/10.1248/bpb.33.1459
  9. J. W. Chae, J. S. Kim, B. S. Jo, S. A. Kang, H. J. Park, S. H. Joo, S. S. Chun, and Y. J. Cho, Biological activity of ethanol extracts from Amelanchier asiatica Fruits, J. Appl. Biol. Chem., 54(4), 238 (2011). https://doi.org/10.3839/jabc.2011.039
  10. H. S. Park, Characteristic and breeding methods from Amelanchier asiatica, Landscaping tree, 86, 21 (2005).
  11. J. Carmichael, W. G. DeGraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 47(4), 936 (1987).
  12. L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids, Anal. Biochem., 126(1), 131 (1982). https://doi.org/10.1016/0003-2697(82)90118-X
  13. S. Jung, C. Jusudurai, M. Staton, Z. Du, S. Ficklin, I. Cho, A. Abbott, J. Tomkins, and D. Main, GDR (genome database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research, BMC Bioinform., 5(1), 130 (2004). https://doi.org/10.1186/1471-2105-5-130
  14. E. J. Cho, T. Yokozawa, D. Y. Rhyu, S. C. Kim, N. Shibahara, and J. C. Park, Study on the inhibitory effects of Korean medicinal plants and their main compounds in the 1,1-diphenyl-2-picrylhydrazyl radical, Phytomedicine, 10(6), 544 (2003). https://doi.org/10.1078/094471103322331520
  15. K. S. Kim and S. K. Roh, Comparative study of antioxidant activity of apple and pear peel, Korean J. Plant Res., 26(3), 347 (2013). https://doi.org/10.7732/kjpr.2013.26.3.347
  16. H. Oku, Y. Ueda, and K. Ishifuro, Antipruritic effects of the fruits of Chaenomeles sinensis, Biol. Pharm. Bull., 26(7), 1031 (2003). https://doi.org/10.1248/bpb.26.1031
  17. H. Yang, K. H. Oh, and Y. C. Yoo, Anti-inflammatory effect of hot water extract of Aronia fruits in LPS-stimulatated RAW 264.7 macrophages, J Korean Soc. Food Sci. nutr., 44(1), 7 (2015). https://doi.org/10.3746/jkfn.2015.44.1.007
  18. G. T. T. Ho, M. Braunlich, I. Austarheim, H. Wangensteen, K. E. Malterud, R. Slimestad, and H. Barsett, Immunomodulating activity of Aronia melanocarpa polyphenols, Int. J. Mol. Sci., 15(7), 11626 (2014). https://doi.org/10.3390/ijms150711626
  19. H. Gao, L. Wu, M. Kuroyanagi, K. Harada, N. Kawahara, T. Nakane, K. Umehara, A. Hirasawa, and Y. Nakamura, Antitumor-promoting constituents from Chaenomeles sinensis Koehne and their activities in JB6 mouse epidermal cells, Chem. Pharm. Bull., 51(11), 1318 (2003). https://doi.org/10.1248/cpb.51.1318
  20. Y. M. Kim, J. Yun, C. K. Lee, H. Lee, K. R. Min, and Y. Kim, Oxyresveratrol and hydroxystilbene compounds, inhibitory effect on tyrosinase and mechanism of action, J. Biol. Chem., 277(18), 16340 (2002). https://doi.org/10.1074/jbc.M200678200
  21. K. H. Kim, D. M. Kim, S. R. Yu, and H. S. Yook, Antioxidant and whitening activities of various cultivars of Korean unripe peaches (Prunus persica L. Batsch), J. Korean Soc. Food Sci. Nutr., 41(2) 156 (2012). https://doi.org/10.3746/jkfn.2012.41.2.156
  22. Y. A. Jang, S. I. Yeo, and J. T. Lee, The research of pharmacological activation for sanguisorbae radix fractions as cosmetic material, Kor. J. Herbology., 27(2), 43 (2012). https://doi.org/10.6116/kjh.2012.27.2.43
  23. C. F. Nathan, Secretory products of macrophages, J. Clin. Invest., 79(2), 319 (1987). https://doi.org/10.1172/JCI112815
  24. P. A. Baeurele and T. Henkel, Function and activation of NF-${\kappa}B$ in the immune system, Annu. Rev. Immunol., 12(1), 141 (1994). https://doi.org/10.1146/annurev.iy.12.040194.001041
  25. H. S. Yi, S. K. Heo, H. J. Yun, J. W. Choi, J. H. Jung, and S. D. Park, Anti-oxidative and anti-inflammatory effects of draconis resina in mouse macrophage cells, J. Herbology. Korea, 23(2), 179 (2008).
  26. C. Nathan, Nitric oxide as a secretory product of mammaliancells, FASEB J., 6(12), 3051 (1992). https://doi.org/10.1096/fasebj.6.12.1381691
  27. S. H. Snyder and D. S. Bredt, Biological roles of nitric oxide, Sci. Am., 266(5), 68 (1992). https://doi.org/10.1038/scientificamerican0592-68
  28. R. Iyengar, D. J. Sutehr, and M. A. Marletta, Macrophage synthesis of nitrite, nitrate and N-nitrosamines : precursors and role of the respiratory burst, Proc. Natl. Acad. Sci. U.S.A., 84(18), 6369 (1987). https://doi.org/10.1073/pnas.84.18.6369
  29. S. Guo, P. Qiu, G. Xu, X. Wu, P. Dong, G. Yang, J. Zheng, D. J. McClements, and H. Xiao, Synergistic anti-inflammatory effects of nobiletin and sulforaphane in lipopolysaccharide-stimulated RAW 264.7 cells, J. Agr. Food Chem., 60(9), 2157 (2012). https://doi.org/10.1021/jf300129t
  30. M. L. McDaniel, G. Kwon, J. R. Hill, C. A. Marshall, and J. A. Corbett, Cytokines and nitric oxide in islet inflammation and diabetes, Proc. Soc. Exp. Biol. Med., 211(1), 24 (1996). https://doi.org/10.3181/00379727-211-43950D
  31. B. D. Golden and S. B. Abramson, Selective cyclooxygenase-2 inhibitor, Rheum. Dis. Clin. N. Am., 25(2), 359 (1999). https://doi.org/10.1016/S0889-857X(05)70073-9