DOI QR코드

DOI QR Code

울진 소광리 산림유전자원보호구역 내 금강소나무 고사지역의 지형 환경 특성 분석

Topographic and Meteorological Characteristics of Pinus densiflora Dieback Areas in Sogwang-Ri, Uljin

  • 김재범 (국립산림과학원 기후변화연구센터) ;
  • 김은숙 (국립산림과학원 기후변화연구센터) ;
  • 임종환 (국립산림과학원 기후변화연구센터)
  • Kim, Jaebeom (Center for Forest & Climate Change, National Institute of Forest Science) ;
  • Kim, Eun-Sook (Center for Forest & Climate Change, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Center for Forest & Climate Change, National Institute of Forest Science)
  • 투고 : 2016.11.21
  • 심사 : 2017.02.24
  • 발행 : 2017.03.30

초록

소나무는 우리나라에서 생태적, 사회 문화적으로 가장 중요한 수종으로 보호 이용되어 온 수종이다. 그러나 산림유전자원보호구역 내 금강소나무 고사가 발생하고 있어 명확한 원인 구명 및 대책 마련이 필요하다. 따라서 본 연구에서는 금강소나무의 고사 원인 구명을 위해 시계열 항공영상을 이용하여 금강소나무 고사 발생 전수 조사를 실시하고 고사발생 지역에 대한 지형환경특성을 분석하여, 소나무 고사의 위치적 특성 및 이에 따른 기상 요인과의 연관성을 파악하였다. 그 결과, 2,600ha 연구 대상지 내에서 약 1,956본의 금강소나무 고사목이 추출되었다. 소나무의 고사는 소나무 생육지역에 비해 고도가 높고, 일사량이 많고, 지형습윤지수가 낮은 지역, 남 남서사면, 능선 부위, 풍노출도가 높은 지역에 집중되어 발생한 것으로 나타났다. 이러한 지역은 지형조건에 따라 영향을 받는 미기상 특성에 따라 고온과 건조 스트레스가 상대적으로 높은 지역으로 분류되는 지역이다. 기후변화에 따라 고온 건조 스트레스가 전반적으로 높아지고 있으며 취약지역을 중심으로 스트레스의 임계치를 넘으면서 고사현상이 발생하는 것으로 추정되었다. 이러한 지형환경 특성을 바탕으로 MaxEnt 모형을 이용하여 소나무 고사 발생 위험 지도를 제작하였으며, 이는 향후 소나무 보호 관리 대책 수립에 활용될 수 있다.

Korean Red Pine (Pinus densiflora) has been protected and used as the most ecologically and socio-culturally important tree species in Korea. However, as dieback of Korean red pines has occurred in the protected area of the forest genetic resources. The aims of this study is to identify causes for dieback of pine tree by investigating topographical characteristics of pine tree dieback and its correlation to meteorological factors. We extracted the dead trees from the time series aerial images and analyzed geomorphological characteristics of dead tree concentration area. As a result, 1,956 dead pine trees were extracted in the study region of 2,600 ha. Dieback of pine trees was found mostly in the areas with high altitude, high solar radiation, low topographic wetness index, south and south-west slopes, ridgelines, and high wind exposure compared to other living pine forest area. These areas are classified as high temperature and high drought stress regions due to micro-climatic characteristics affected by topographic factors. As high temperature and drought stress are generally increasing with climate change, we can evaluated that a risk of pine tree dieback is also increasing. Based on these geomorphological characteristics, we developed a pine tree dieback risk map using Maximum Entropy Model (MaxEnt), and it can be useful for establishing Korean red pine protection and management strategies.

키워드

참고문헌

  1. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, and E. H. Hogg, P. Gonzalez, R. Fensham, Z. Zharg, J. Castro, N. Demidova, J. H. Lim, G. Allard, S. W. Running, A. Semerci, and N. Cobb, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4), 660-684. https://doi.org/10.1016/j.foreco.2009.09.001
  2. Beven, K. J., and M. J. Kirkby, 1979: A physically based, variable contributing area model of basin hydrology. Hydrolological Science Bulletin 24, 43-69. https://doi.org/10.1080/02626667909491834
  3. Elith, J., S. J. Phillips, T. Hastie, M. Dudik, Y. E. Chee, and C. J. Yates, 2011: A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  4. Fayle, D., 1975: Extension and longitudinal growth during the development of red pine root systems. Canadian Journal of Forest Research 5(1), 109-121. https://doi.org/10.1139/x75-016
  5. Fu, P., and P.M. Rich, 1999: Design and implementation of the solar analyst: an arc view extension for modeling solar radiation at landscape scales. Proceedings of the Nineteenth Annual ESRI User Conference.
  6. Jeong, Y. S., J. H. Lim, and K.-H. Ka, 2015: Effect of low temperature for mycelia growth of ectomycorrhizal mushrooms. Proceeding of 2015 International Conference of the Federation of Korean Microbiological Societies, Korea.
  7. Kang, S. K., J.-H. Lim, and N. H. Cho, 2016: Modelling analysis of climate and s agricultural and forest meteorology oil depth effects on pine tree dieback in Korea using BIOME-BGC. Korean Journal of Agricultural and Forest Meteorology 18(4).
  8. Kim, D. Y., B. K. Ahn, M. P. Kim and S. J. Im, 2014: Morphological characteristics analysis of root plate in wind-uprooted trees. Journal of Korean Forest Society 103(2), 248-257. https://doi.org/10.14578/jkfs.2014.103.2.248
  9. Kim. E. S., J. S. Lee, J. B. Kim, J. H. Lim, and J. S. Lee, 2016: Conservation and management system of Korean pine⋅pine forest, National Institute of Forest Science. 22pp.
  10. Kim, J. W., and J. S. Um, 2013: Exploring NDVI gradient varying across landform and solar intensity using GWR: A case study of Mt. Geumgang in North Korea. Journal of Korean Society for Geospatial Information System 21(4), 73-81. https://doi.org/10.7319/kogsis.2013.21.4.073
  11. Lim, J.-H., 2016: Climate change-induced dieback of evergreen conifers in Korea and options for adaptation. Proceedings of 2016 International Climate Change Adaptation Symposium on Forest Management for Enhancing Resilience to Climate Change, Korea.
  12. National Institute of Forest Science, 2009: Causes and future trends of pine tree dieback. 20pp.
  13. National Institute of Forest Science, 2012: Economic Species (1) Pine tree. 250pp.
  14. Philips, S. J., M. Dudik, and R. E. Schapire, 2004: A maximum entropy approach to species distribution modeling. In proceedings of the Twenty-First International Conference on Machine Learning, 655-662.