References
- Abdullah, S. and Turabieh, H. (2012), On the use of multi neighbourhood structures within a tabu-based memetic approach to university timetabling problems, Inform, Sciences, 191, 146-168.
- Agustin-Blas, L. E., Salcedo-Sanz, S., Ortiz-Garcia, E. G., Portilla-Figueras, A., and Perez-Bellido, A. M. (2009), Hybrid grouping genetic algorithm for assigning students to preferred laboratory groups, Expert System Applications, 36(3), 7234-7241. https://doi.org/10.1016/j.eswa.2008.09.020
- Akkoyunlu, E. A. (1973), A linear algorithm for computing the optimum university timetable, The Computer Journal, 16(4), 347-350. https://doi.org/10.1093/comjnl/16.4.347
- Aladag, A. H., Hocaoglu, G., and Basaran, M. A. (2009), The effect of neighbourhood structures on tabu search algorithm in solving course timetabling problem, Expert System Applications, 36(10), 12349-12356. https://doi.org/10.1016/j.eswa.2009.04.051
- Badoni, R. P., Gupta, D. K., and Mishra, P. (2014), A new hybrid algorithm for university course timetabling problem using events based on groupings of students, Computers & Industrial Engineering, 78, 12-25. https://doi.org/10.1016/j.cie.2014.09.020
- Bakir, M. A. and Akshop, C. (2008), A 0-1 integer programming approach to a university timetabling problem, Hacettepe Journal of Mathematics and Statistics, 37(1), 41-55.
- Basir, N., Ismail. W., and Norwawi, N. (2013), A simulated annealing for Tahmidi course timetabling, Procedia Technology, 11, 437-445. https://doi.org/10.1016/j.protcy.2013.12.213
- Bellio, R., Ceschia, S., Gaspero, L. D., Schaerf, A., and Urli, T. (2016), Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem, Computers & Operation Research, 65, 83-92. https://doi.org/10.1016/j.cor.2015.07.002
- Bolaji, A. L., Khader, A. T., Al-Betar, M. A., and Awadallah, M. A. (2014), University course timetabling using hybridized artificial bee colony with hill climbing optimizer, Journal of Computational Science, 5(5), 809-818. https://doi.org/10.1016/j.jocs.2014.04.002
- Boland, N., Hughes, B. D., Merlot, L. T. G., and Stuckey, P. J. (2006), New integer linear programming approaches for course timetabling, Computers & Operation Research 35(7), 2209-2233. https://doi.org/10.1016/j.cor.2006.10.016
- Broek, J. V. D., Hurkens, C., and Woeginger, G. (2009), Timetabling problems at the TU Eindhoven, European Journal of Operational Research, 196(3), 877-885. https://doi.org/10.1016/j.ejor.2008.04.038
- Burke, E. K., Elliman, D. G., and Weare, R. F. (1994), A university timetabling system based on Graph colouring and constraint manipulation, Journal of Research on Computing in Education, 27, 1-18. https://doi.org/10.1080/08886504.1994.10782112
- Cacchiani, V., Caprara, A., Roberti, R., and Toth, P. (2013), A new lower bound for curriculum-based course timetabling, Computers & Operation Research, 40(10), 2466-2477. https://doi.org/10.1016/j.cor.2013.02.010
- Cangalovic, M. and Schreuder, J. A. M. (1991), Exact coloring algorithms for weighted graphs applied to timetabling problems with lectures of different lengths, European Journal of Operational Research, 51(2), 248-258. https://doi.org/10.1016/0377-2217(91)90254-S
- Ceschia, S., Gaspero, L. D., and Schaerf, A. (2012), Design, engineering, and experimental analysis of a simulated annealing approach to the post-enrolment course timetabling problem, Computers & Operation Research, 39(7), 1615-1624. https://doi.org/10.1016/j.cor.2011.09.014
- Daskalaki, S., Birbas, T., and Housos, E. (2004), An IP formulation for a case study in university timetabling, European Journal of Operational Research, 153(1), 117-135. https://doi.org/10.1016/S0377-2217(03)00103-6
- Deris, S. B., Omatu, S., Ohta, H., and Samat, P. A. B. D. (1997), University timetabling by Constraint based reasoning: A case study, Journal of the Operational Research Society, 48(12), 1178-1190. https://doi.org/10.1057/palgrave.jors.2600469
- Dimopoulou, M. and Miliotis, P. (2001), Implementation of a university course and examination timetabling system, European Journal of Operational Research, 130(1), 202-213. https://doi.org/10.1016/S0377-2217(00)00052-7
- Domenech, B. and Lusa, A. (2015), A MILP model for the teacher assignment problem considering teachers' preferences, European Journal of Operational Research, 249(3), 1153-1160. https://doi.org/10.1016/j.ejor.2015.08.057
- Hochbaum, D. S. (1997), Approximation algorithms for NP-hard problems. PWS Publishing Company, Boston, MA.
- Ismayilova, A. A., Sagir, M., and Gasimov, R. N. (2007), A multiobjective faculty-course-time slot assignment problem with preferences, Mathematical and Computer Modelling, 46(7-8), 1017-1029. https://doi.org/10.1016/j.mcm.2007.03.012
- Lawrie, N. L. (1969), An integer linear programming model of a school timetabling problem, The Computer Journal, 12, 307-316. https://doi.org/10.1093/comjnl/12.4.307
- Lu, Z. and Hao, J. K. (2010), Adaptive tabu search for course timetabling, European Journal of Operational Research, 200(1), 235-244. https://doi.org/10.1016/j.ejor.2008.12.007
- Mahiba, A. A. and Durai, C. A. D. (2012), Genetic Algorithm with Search Bank Strategies for University Course Timetabling Problem, Procedia Engineering, 38, 253-263. https://doi.org/10.1016/j.proeng.2012.06.033
- Martin, C. H. (2004), Ohio University's college of business uses integer programming to schedule classes, Interfaces, 34, 460-465. https://doi.org/10.1287/inte.1040.0106
- Mason, A. J. (2011), OpenSolver -An open source add-in to solve linear and integer programmes in Excel. In: Klatte D, Luthi HJ, Schmedders K (eds) Operations Research Proceedings, Springer, Berlin Heidelberg, 401-406.
- Miranda, J., Rey, P. A., and Robles, J. M. (2012), UdpSkeduler: A web architecture based decision support system for course and classroom scheduling, Decision Support Systems, 52(2), 505-513. https://doi.org/10.1016/j.dss.2011.10.011
- Mirrazavi, S. K., Mardle, S. J., and Tamiz, M. (2003), A two-phase multiple objective approach to university timetabling utilizing optimization and evolutionary solution methodologies, Journal of the Operational Research Society, 54(11), 1155-1166. https://doi.org/10.1057/palgrave.jors.2601628
- Panagiotis, S., Vigla, E., and Karaboyas, F. (1998), Nearly optimum timetable construction through CLP and intelligent search, International Journal of Artificial Intelligence Tools, 7(4), 415-442. https://doi.org/10.1142/S0218213098000196
- Phillips, A. E., Waterer, H., Ehrgott, M., and Ryan, D. M. (2015), Integer programming methods for largescale practical classroom assignment problems, Computers & Operations Research, 53, 42-53. https://doi.org/10.1016/j.cor.2014.07.012
- Schimmelpfeng, K. and Helber, S. (2007), Application of a real-world university-course timetabling model solved by integer programming, OR Spectrum, 29(4), 783-803. https://doi.org/10.1007/s00291-006-0074-z
- Tripathy, A. (1980), A Lagrangian relaxation approach to course timetabling, Journal of the Operational Research Society, 31(7), 599-603. https://doi.org/10.1057/jors.1980.116
- Vermuyten, H., Lemmens, S., Marques, I., and Belien, J. (2015), Developing compact course timetables with optimized student flows, European Journal of Operational Research, 251(2), 651-661. https://doi.org/10.1016/j.ejor.2015.11.028
Cited by
- Decision Support for Complicated Irrigation System: A Case Study of Lower Pak Phanang River Basin vol.1060, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1060/1/012059