DOI QR코드

DOI QR Code

Real-Time Classification, Visualization, and QoS Control of Elephant Flows in SDN

SDN에서 엘리펀트 플로우의 실시간 분류, 시각화 및 QoS 제어

  • Muhammad, Afaq (Jeju National University Department of Computer Engineering) ;
  • Song, Wang-Cheol (Jeju National University Department of Computer Engineering)
  • Received : 2016.12.11
  • Accepted : 2017.02.17
  • Published : 2017.03.31

Abstract

Long-lived flowed termed as elephant flows in data center networks have a tendency to consume a lot of bandwidth, leaving delay-sensitive short-lived flows referred to as mice flows choked behind them. This results in non-trivial delays for mice flows, eventually degrading application performance running on the network. Therefore, a datacenter network should be able to classify, detect, and visualize elephant flows as well as provide QoS guarantees in real-time. In this paper we aim to focus on: 1) a proposed framework for real-time detection and visualization of elephant flows in SDN using sFlow. This allows to examine elephant flows traversing a switch by double-clicking the switch node in the topology visualization UI; 2) an approach to guarantee QoS that is defined and administered by a SDN controller and specifications offered by OpenFlow. In the scope of this paper, we will focus on the use of rate-limiting (traffic-shaping) classification technique within an SDN network.

오래 지속되는 플로우인 엘리펀트 플로우는 데이터 센터에서 많은 대역폭을 소비해서, 지연에 민감하고 짧은 시간 흐르는 플로우인 마이스 플로우의 흐름을 방해하게 된다. 이는 마이스 플로우에 대해 적지않은 지연을 발생시켜서, 결과적으로 그 네트워크에서 동작하고 있는 응용의 성능을 저하시키게 된다. 그러므로 데이터 센터 네트워크는 이를 분류하고 시각화 해내어 실시간으로 QoS 프로비져닝을 제공할 수 있어야 한다. 본 논문에서는 다음에 대해 논한다. (1) SDN에서 sflow를 이용한 엘리펀트 플로우의 실시간 검출 및 시각화를 위한 프레임워크 제시. 이는 시각화된 토폴로지에서 스위치를 더블클릭 하므로써 스위치를 통과하는 엘리펀트 플로우를 점검할 수 있게 한다. (2) SDN 제어기에 의해서 정의되고 관리되는 QoS를 보장하는 접근 및 OpenFlow에 의해 제공되는 규격. 본 논문에서는 SDN 네트워크내에서 rate-limiting (traffic-shaping) 분류 기법을 사용하는 것을 주로 논의한다.

Keywords

References

  1. J. S. Marron, Felix Hernandez-Campos, and F. D. Smith, "Mice and elephants visualization of internet traffic," in Compstat, pp. 47-54, Physica-Verlag HD, 2002.
  2. J. Liu, J. Li, G. Shou, Y. Hu, Z. Guo, and W. Dai, "SDN based load balancing mechanism for elephant flow in data center networks," in IEEE 2014 Int. Symp. Wirel. Pers. Multimedia Commun. (WPMC), pp. 486-490, 2014.
  3. M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, "Hedera: Dynamic flow scheduling for data center networks," in NSDI, vol. 10, pp. 19-19, San Jose, California, Apr. 2010.
  4. A. R. Curtis, W. Kim, and P. Yalagandula, "Mahout: Low-overhead datacenter traffic management using end-host-based elephant detection," in Proc. IEEE INFOCOM, pp. 1629-1637, 2011.
  5. P. Phaal, S. Panchen, and N. McKee, InMon corporation's sFlow: A method for monitoring traffic in switched and routed networks, 2001, Retrieved Nov. 15, 2016, from https://tools.ietf.org/html/rfc3176
  6. A. Islam, et al., "Robust software-defined scheme for image sensor network," J. KICS, vol. 41, no. 2, pp. 215-221, Feb. 2016. https://doi.org/10.7840/kics.2016.41.2.215
  7. inMon sFlow-RT, Retrieved Nov. 13, 2016, from http://www.inmon.com/products/sFlow-RT.php
  8. Ian F. Akyildiz, et al., "A roadmap for traffic engineering in SDN-OpenFlow networks," Computer Networks, vol. 71, pp. 1-30, 2014. https://doi.org/10.1016/j.comnet.2014.06.002
  9. M. Chiesa, G. Kindler, and M. Schapira, "Traffic engineering with equal-cost-multipath: An algorithmic perspective," in IEEE INFOCOM 2014-IEEE Conf. Computer Commun., pp. 1590-1598, 2014.
  10. S. Liu, H. Xu, and Z. Cai, "Low latency datacenter networking: A short survey," arXiv preprint arXiv:1312.3455, 2013.
  11. S. U. Rehman, et al., "Network-wide traffic visibility in OF@TEIN SDN testbed using sFlow," IEEE APNOMS, pp. 1-6, Sept. 2014.
  12. C. Marist, What is Avior? (2012), Retrieved Nov. 13, 2016, from http://openflow.marist.edu/avior.html
  13. Floodlight Is an Open SDN Controller (2013), Retrieved Nov. 22, 2016, from http://www.projectfloodlight.org
  14. P. Ferguson and D. Senie, Network ingress filtering: Defeating denial of service attacks which employ IP source address spoofing, 1997, Retrieved Dec. 02, 2016 from https://www.ietf.org/rfc/rfc2827.txt
  15. S. Tomovic, N. Prasad, and I. Radusinovic, "SDN control framework for QoS provisioning," IEEE TELFOR, pp. 111-114, 2014.
  16. R. Wallner and R. Cannistra, "An SDN approach: Quality of service using big switchs floodlight open-source controller," in Proc. Asia-Pacific Advanced Network, vol. 35, pp. 14-19, Jun. 2013.
  17. Mininet (2013, Mar), An Instant Virtual Network on your Laptop (or other PC), Retrieved Oct. 25, 2016, from http://www.mininet.org
  18. Iperf: The TCP/UDP Bandwidth Management Tool, Retrieved Nov. 18, 2016, from https://iperf.fr/
  19. G. Bang, et al., "A protection method using destination address packet sampling for SYN flooding attack in SDN," J. Korea Multimedia Soc., vol. 18, no. 1, pp. 35-41, Jan. 2015. https://doi.org/10.9717/kmms.2015.18.1.035
  20. J. W. Seo and S. J. Lee, "A study on the detection of DDoS attack using the IP Spoofing," J. Korea Inst. Inf. Secur. and Cryptol., vol. 25, no. 1, pp. 147-153, Feb. 2015. https://doi.org/10.13089/JKIISC.2015.25.1.147