DOI QR코드

DOI QR Code

Effects of Diffusion Layer (DL) and ORR Catalyst (MORR) on the Performance of MORR/IrO2/DL Electrodes for PEM-Type Unitized Regenerative Fuel Cells

  • Choe, Seunghoe (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Byung-Seok (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2016.11.15
  • Accepted : 2016.12.17
  • Published : 2017.03.31

Abstract

This study aims to examine the influences of substrates/diffusion layers (DL) and oxygen reduction reaction catalysts ($M_{ORR}$) on the performance of $M_{ORR}/IrO_2$/DL-type bifunctional oxygen electrodes for use in polymer electrolyte membrane (PEM)-type unitized regenerative fuel cells (URFC). The $M_{ORR}/IrO_2$/DL electrodes were prepared via two sequential steps: anodic electrodeposition of $IrO_2$ on various DLs and fabrication of $M_{ORR}$ layers (Pt, Pd, and Pt-Ru) by spraying on $IrO_2/DL$. Experiments using different DLs, with Pt as the $M_{ORR}$, revealed that the roughness factor of the DL mainly determined the electrode performance for both water electrolyzer (WE) and fuel cell (FC) operations, while the contributions of porosity and substrate material were insignificant. When Pt-Ru was utilized as the $M_{ORR}$ instead of Pt, WE performance was enhanced and the electrode performance was assessed by analyzing round-trip efficiencies (${\varepsilon}_{RT}$) at current densities of 0.2 and $0.4A/cm^2$. As a result, using Pt-Ru instead of Pt alone provided better ${\varepsilon}_{RT}$ at both current densities, while Pd resulted in very low ${\varepsilon}_{RT}$. Improved efficiency was related to the additional catalytic action by Ru toward ORR during WE operation.

Keywords

References

  1. F. Mitlitsky, B. Myers and A. H. Weisberg, Energy & Fuels, 1998, 12, 56-71. https://doi.org/10.1021/ef970151w
  2. T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara and Y. Miyazaki, J. Power Sources, 2002, 112(2), 583-587. https://doi.org/10.1016/S0378-7753(02)00466-4
  3. J. Pettersson, B. Ramsey and D. Harrison, J. Power Sources, 2006, 157(1), 28-34. https://doi.org/10.1016/j.jpowsour.2006.01.059
  4. F. Barbir, T. Molter and L. Dalton, Int. J. Hydrogen Energy, 2005, 30(4), 351-357. https://doi.org/10.1016/j.ijhydene.2004.08.004
  5. M. Gabbasa, K. Sopian, A. Fudholi and N. Asim, Int. J Hydrogen Energy, 2014, 39(31), 17765-17778. https://doi.org/10.1016/j.ijhydene.2014.08.121
  6. Y. Wang, D. Y. C. Leung, J. Xuan and H. Wang, Renewable and Sustainable Energy Reviews, 2016, 65, 961-977. https://doi.org/10.1016/j.rser.2016.07.046
  7. U. Wittstadt, E. Wagner and T. Jungmann, J. Power Sources, 2005, 145(2), 555-562. https://doi.org/10.1016/j.jpowsour.2005.02.068
  8. S. Song, H. Zhang, X. Ma, Z.-G. Shao, Y. Zhang and B. Yi, Electrochemistry Communications, 2006, 8(3), 399-405. https://doi.org/10.1016/j.elecom.2006.01.001
  9. G. Chen, H. Zhang, J. Cheng, Y. Ma and H. Zhong, Electrochemistry Communications, 2008, 10(9), 1373-1376. https://doi.org/10.1016/j.elecom.2008.07.002
  10. H.-Y. Jung, S.-Y. Huang, P. Ganesan and B. N. Popov, J. Power Sources, 2009, 194(2), 972 -975. https://doi.org/10.1016/j.jpowsour.2009.06.030
  11. S. A. Grigoriev, P. Millet, K. A. Dzhus, H. Middleton, T. O. Saetre and V. N. Fateev, Int. J. Hydrogen Energy, 2010, 35(10), 5070-5076. https://doi.org/10.1016/j.ijhydene.2009.08.081
  12. H.-Y. Jung, S.-Y. Huang and B. N. Popov, J. Power Sources, 2010, 195(7), 1950-1956. https://doi.org/10.1016/j.jpowsour.2009.10.002
  13. S. Altmann, T. Kaz and K. A. Friedrich, Electrochim. Acta, 2011, 56(11), 4287-4293. https://doi.org/10.1016/j.electacta.2011.01.077
  14. W. H. Lee and H. Kim, J. Electrochem. Soc., 2014, 161(6), F729-F733. https://doi.org/10.1149/2.071406jes
  15. S. Zhigang, Y. Baolian and H. Ming, J. Power Sources, 1999, 79(1), 82-85. https://doi.org/10.1016/S0378-7753(99)00047-6
  16. X. Zhuo, S. Sui and J. Zhang, Int. J. Hydrogen Energy, 2013, 38(11), 4792-4797. https://doi.org/10.1016/j.ijhydene.2013.01.137
  17. S.-H. Roh, T. Sadhasivam, H. Kim, J.-H. Park and H.-Y. Jung, Int. J. Hydrogen Energy, 2016, 41(45), 20650-20659. https://doi.org/10.1016/j.ijhydene.2016.09.062
  18. Y. Zhang, C. Wang, N. Wan and Z. Mao, Int. J. Hydrogen Energy, 2007, 32(3), 400-404. https://doi.org/10.1016/j.ijhydene.2006.06.047
  19. F. Ye, J. Li, X. Wang, T. Wang, S. Li, H. Wei, Q. Li and E. Christensen, Int. J. Hydrogen Energy, 2010, 35(15), 8049-8055. https://doi.org/10.1016/j.ijhydene.2010.01.094
  20. F.-D. Kong, S. Zhang, G.-P. Yin, N. Zhang, Z.-B. Wang and C.-Y. Du, Electrochemistry Communications, 2012, 14(1), 63-66. https://doi.org/10.1016/j.elecom.2011.11.002
  21. F.-D. Kong, S. Zhang, G.-P. Yin, N. Zhang, Z.-B. Wang and C.-Y. Du, J. Power Sources, 2012, 210, 321-326. https://doi.org/10.1016/j.jpowsour.2012.02.021
  22. B.-S. Lee, H.-Y. Park, M. K. Cho, J. W. Jung, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Park, K.-Y. Lee and J. H. Jang, Electrochemistry Communications, 2016, 64, 14 -17. https://doi.org/10.1016/j.elecom.2016.01.002
  23. T. Ioroi, T. Oku, K. Yasuda, N. Kumagai and Y. Miyazaki, J. Power Sources, 2003, 124(2), 385-389. https://doi.org/10.1016/S0378-7753(03)00795-X
  24. X. Wang, H. Zhang, J. Zhang, H. Xu, X. Zhu, J. Chen and B. Yi, J. Power Sources, 2006, 162(1), 474-479. https://doi.org/10.1016/j.jpowsour.2006.06.064
  25. S. A. Grigoriev, P. Millet, S. A. Volobuev and V. N. Fateev, Int. J. Hydrogen Energy, 2009, 34(11), 4968-4973. https://doi.org/10.1016/j.ijhydene.2008.11.056
  26. C. M. Hwang, M. Ishida, H. Ito, T. Maeda, A. Nakano, Y. Hasegawa, N. Yokoi, A. Kato and T. Yoshida, Int. J. Hydrogen Energy, 2011, 36(2), 1740-1753. https://doi.org/10.1016/j.ijhydene.2010.10.091
  27. C. M. Hwang, M. Ishida, H. Ito, T. Maeda, A. Nakano, A. Kato and T. Yoshida, J. Power Sources, 2012, 202, 108-113. https://doi.org/10.1016/j.jpowsour.2011.11.041
  28. J. K. Norskov, J. Rossmeisl, A. Logadottir and L. Lindqvist, Journal of Physical Chemistry B, 2014, 108(46), 17886-17892. https://doi.org/10.1021/jp047349j
  29. M. H. Miles and M. A. Thomason, J. Electrochem. Soc., 1976, 123(10), 1459-1461. https://doi.org/10.1149/1.2132619
  30. http://www.platinum.matthey.com/prices/price-tables
  31. B.-S. Lee, S. H. Ahn, H.-Y. Park, I. Choi, S. J. Yoo, H.-J. Kim, D. Henkensmeier, J. Y. Kim, S. Park, S. W. Nam, K.-Y. Lee and J. H. Jang, Appl. Catal., B, 2015, 179, 285-291. https://doi.org/10.1016/j.apcatb.2015.05.027
  32. B.-S. Lee, H.-Y. Park, I. Choi, M. K. Cho, H.-J. Kim, S. J. Yoo, D. Henkensmeier, J. Y. Kim, S. W. Nam, S. Park, K.-Y. Lee and J. H. Jang, J. Power Sources, 2016, 309, 127-134. https://doi.org/10.1016/j.jpowsour.2015.12.139