DOI QR코드

DOI QR Code

PROPERTIES OF DUST OBSCURED GALAXIES IN THE NEP-DEEP FIELD

  • Oi, Nagisa (Department of Infrared Astrophysics Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • Matsuhara, Hideo (Department of Infrared Astrophysics Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • Pearson, Chris (Department of Physical Sciences, The Open University) ;
  • Buat, Veronique (Aix-Marseille Universite, CNRS, LAM (Laboratoire d'Astrophysique de Marseille)) ;
  • Burgarella, Denis (Aix-Marseille Universite, CNRS, LAM (Laboratoire d'Astrophysique de Marseille)) ;
  • Malkan, Matt (Department of Physics and Astronomy, UCLA) ;
  • Miyaji, Takamitsu (Universidad Nacional Autonoma de Mexico) ;
  • AKARI-NEP team (Department of Infrared Astrophysics Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
  • Received : 2015.07.23
  • Accepted : 2016.10.20
  • Published : 2017.03.31

Abstract

We selected 47 DOGs at z ~ 1.5 using optical R (or r'), AKARI $18{\mu}m$, and $24{\mu}m$ color in the AKARI North Ecliptic Pole (NEP) Deep survey field. Using the colors among 3, 4, 7, and 9µm, we classified them into 3 groups; bump DOGs (23 sources), power-law DOGs (16 sources), and unknown DOGs (8 sources). We built spectral energy distributions (SEDs) with optical to far-infrared photometric data and investigated their properties using SED fitting method. We found that AGN activity such as a AGN contribution to the infrared luminosity and a Chandra detection rate for bump and power-law DOGs are significantly different, while stellar component properties like a stellar mass and a star-formation rate are similar to each other. A specific star-formation rate range of power-law DOGs is slightly higher than that of bump DOGs with wide overlap. Herschel/PACS detection rates are almost the same between bump and power-law DOGs. On the other hand SPIRE detection rates show large differences between bump and power-law DOGs. These results might be explained by differences in dust temperatures. Both groups of DOGs host hot and/or warm dust (~ 50 Kelvin), and many bump DOGs contain cooler dust (${\leq}30$ Kelvin).

Keywords

References

  1. Bussmann, R. S., Dey, A., Armus, L., et al., 2012, The Star Formation Histories of z 2 Dust-obscured Galaxies and Submillimeter-selected Galaxies, ApJ, 744, 150 https://doi.org/10.1088/0004-637X/744/2/150
  2. Calzetti, D., Armus, L., Bohlin, R. C., et al., 2000, The Dust Content and Opacity of Actively Star-forming Galaxies, ApJ, 533, 682 https://doi.org/10.1086/308692
  3. Dale, D. A. & Helou, G., 2002, The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths, ApJ,, 576, 159 https://doi.org/10.1086/341632
  4. Dey, A., Soifer, B. T., Desai, V., et al., 2008, A Signicant Population of Very Luminous Dust-Obscured Galaxies at Redshift z - 2, ApJ, 677, 943 https://doi.org/10.1086/529516
  5. Fritz, J., 2006, Revisiting the infrared spectra of active galactic nuclei with a new torus emission model, MNRAS, 366, 767 https://doi.org/10.1111/j.1365-2966.2006.09866.x
  6. Goto, T., Takagi, T., Matsuhara, H., et al., 2010, Evolution of infrared luminosity functions of galaxies in the AKARI NEP-deep field. Revealing the cosmic star formation history hidden by dust, A&A, 514, A6 https://doi.org/10.1051/0004-6361/200913182
  7. Ilbert, O., Arnouts, S., McCracken, H. J., et al., 2006, Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey, A&A, 457, 841 https://doi.org/10.1051/0004-6361:20065138
  8. Kovacs, A., Omont, A., Beelen, A., et al., 2010, Far-infrared Properties of Spitzer-selected Luminous Starbursts, ApJ, 717, 29 https://doi.org/10.1088/0004-637X/717/1/29
  9. Kroupa, P., 2001, On the variation of the initial mass function, MNRAS, 322, 231 https://doi.org/10.1046/j.1365-8711.2001.04022.x
  10. Lagache, G., Abergel, A., Boulanger, F., Desert, F. X., & Puget, J. -L., 1999, First detection of the warm ionised medium dust emission. Implication for the cosmic far-infrared background, A&A, 344, 322
  11. Lonsdale, C. J., Polletta, M. d. C., Omont, A., et al., 2009, MAMBO 1.2 mm Observations of Luminous Starbursts at z 2 in the SWIRE Fields, ApJ, 692, 422 https://doi.org/10.1088/0004-637X/692/1/422
  12. Maraston, C., 2005, Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies, MNRAS, 362, 799 https://doi.org/10.1111/j.1365-2966.2005.09270.x
  13. Matsuhara, H., Wada, T., Matsuura, S., et al., 2006, Deep Extragalactic Surveys around the Ecliptic Poles with AKARI (ASTRO-F), PASJ, 58, 673 https://doi.org/10.1093/pasj/58.4.673
  14. Melbourne, J., Peng, C. Y., Soifer, B. T., et al., 2011, The Black Hole Masses and Star Formation Rates of z > 1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy, AJ, 141, 141 https://doi.org/10.1088/0004-6256/141/4/141
  15. Murata, K., Matsuhara, H., Wada, T., et al., 2013, AKARI North Ecliptic Pole Deep Survey. Revision of the catalogue via a new image analysis, A&A, 559A, 132
  16. Noll, S., Burgarella, D., Giovannoli, E., et al., 2009, Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample, A&A, 507, 1793 https://doi.org/10.1051/0004-6361/200912497
  17. Oi, N., Matsuhara, H., Murata, K., et al., 2014, Optical - near-infrared catalog for the AKARI north ecliptic pole Deep field, A&A, 566A, 60
  18. Soifer, B. T., Sanders, D. B., Neugebauer, G., et al., 1986, The luminosity function and space density of the most luminous galaxies in the IRAS survey, ApJ, 303, L41 https://doi.org/10.1086/184649