DOI QR코드

DOI QR Code

Development of Near-Infrared Reflectance Spectroscopy (NIRS) Model for Amylose and Crude Protein Contents Analysis in Rice Germplasm

근적외선 분광광도계를 이용한 벼 유전자원 아밀로스 및 단백질 함량분석을 위한 모델개발

  • Oh, Sejong (National Agrobiodiversity Center National Institute of Agricultural Sciences, RDA) ;
  • Lee, Myung Chul (National Agrobiodiversity Center National Institute of Agricultural Sciences, RDA) ;
  • Choi, Yu Mi (National Agrobiodiversity Center National Institute of Agricultural Sciences, RDA) ;
  • Lee, Sukyeung (National Agrobiodiversity Center National Institute of Agricultural Sciences, RDA) ;
  • Oh, Myeongwon (National Agrobiodiversity Center National Institute of Agricultural Sciences, RDA) ;
  • Ali, Asjad (National Agrobiodiversity Center National Institute of Agricultural Sciences, RDA) ;
  • Chae, Byungsoo (National Agrobiodiversity Center National Institute of Agricultural Sciences, RDA) ;
  • Hyun, Do Yoon (National Agrobiodiversity Center National Institute of Agricultural Sciences, RDA)
  • 오세종 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 이명철 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 최유미 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 이수경 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 오명원 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • ;
  • 채병수 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 현도윤 (농촌진흥청 국립농업과학원 농업유전자원센터)
  • Received : 2016.09.13
  • Accepted : 2017.01.02
  • Published : 2017.02.28

Abstract

The objective of this research was to develop Near-Infrared Reflectance Spectroscopy (NIRS) model for amylose and protein contents analysis of large accessions of rice germplasm. A total of 511 accessions of rice germplasm were obtained from National Agrobiodiversity Center to make calibration equation. The accessions were measured by NIRS for both brown and milled brown rice which was additionally assayed by iodine and Kjeldahl method for amylose and crude protein contents. The range of amylose and protein content in milled brown rice were 6.15-32.25% and 4.72-14.81%, respectively. The correlation coefficient ($R^2$), standard error of calibration (SEC) and slope of brown rice were 0.906, 1.741, 0.995 in amylose and 0.941, 0.276, 1.011 in protein, respectively, whereas $R^2$, SEC and slope of milled brown rice values were 0.956, 1.159, 1.001 in amylose and 0.982, 0.164, 1.003 in protein, respectively. Validation results of this NIRS equation showed a high coefficient determination in prediction for amylose (0.962) and protein (0.986), and also low standard error in prediction (SEP) for amylose (2.349) and protein (0.415). These results suggest that NIRS equation model should be practically applied for determination of amylose and crude protein contents in large accessions of rice germplasm.

본 연구에서는 벼 유전자원의 이화학적 대량 분석체계 구축을 위하여 비파괴 분석 방법 중의 하나인 근적외선 분광분석(NIRS) 예측모델을 개발하고, 미지 시료 적용 시 분석 정확도와 실재 적용가능성을 평가하기 위해 교차 검정과 외부 검정을 수행하였다. NIRS 예측모델 개발을 위해 농업유전자원센터 보유자원 중 511자원을 사용하였고, 그 중 아밀로스 농도 대표자원 200점을 추가 선정하여 보존자원과 증식자원의 아밀로스 및 단백질 성분 변화를 비교하였다. 습식분석 상호비교, t-Test를 통한 통계처리 결과로 볼 때 저장고 보존자원과 증식자원 간의 중대한 이화학적 성질의 변이 현상은 관측되지 않았으므로 NIRS 예측모델 개발에 보존자원을 사용하는 것은 가능할 것으로 판단되었다. 511 자원의 습식분석 결과 아밀로스 농도는 6.15-32.25%, 단백질 농도는 4.72-14.81%였다. 현미와 현미가루의 두 가지 시료 형태에 대한 NIR 스펙트럼을 얻었고 일련의 통계적 처리를 이용하여 NIRS 예측모델을 얻었다. 현미의 $R^2$, SEC, Slope 값은 아밀로스 농도의 경우 0.906, 1.741, 0.995였고, 단백질 농도의 경우 0.941, 0.276, 1.011 이었다. 현미가루의 $R^2$, SEC, Slope 값은 아밀로스 농도의 경우 0.956, 1.159, 1.001이었고, 단백질 농도의 경우 0.982, 0.164, 1.003이었다. 이와 같은 결과로 NIRS 예측모델 개발에는 가루형태의 시료가 효율적임을 알 수 있었다. 아밀로스 농도의 경우 9.62-16.58%의 자원밀도가 상대적으로 낮은 구간에 대한 보완을 위해 추가 200자원의 습식분석, NIRS 측정 수행하였으며, 보완된 최적 NIRS 예측모델의 $R^2$, SEC, Slope 값은 아밀로스 농도의 경우 0.970, 1.010, 1.000 이었고 단백질 농도의 경우 0.983, 0.158, 0.998이었다. 최적 NIRS 예측모델의 미지시료 적용 시 정확도를 평가하기 위해 아밀로스는 132자원, 조단백질은 124자원을 검정자원으로 사용하여 외부 검정과정을 거친 결과 $R^2$, SEP 값은 아밀로스 농도의 경우 0.962, 2.349였고, 단백질 농도의 경우 0.986, 0.415였다. 이상의 결과를 종합해 볼 때 본 연구에서 개발된 NIRS 예측모델은 습식분석방법을 대체하여 벼 유전자원의 아밀로스 및 단백질 농도의 대량 분석에 효율적으로 적용 가능할 것으로 판단된다.

Keywords

References

  1. Ahn, H.G. and Y.H. Kim. 2012. Discrimination of Korean domestic and foreign soybeans using near-infrared reflectance spectroscopy. Korean J. Crop Sci. 57(3):296-300 (in Korean). https://doi.org/10.7740/kjcs.2012.57.3.296
  2. Bagchi, T.B., S. Sharma and K. Chattopadhyay. 2016. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran. Food Chemistry 91:21-27.
  3. Bao, J.S., Y.Z. Cal and H. Corke. 2001. Prediction of rice starch quality parameters by near infrared reflectance spectroscopy. J. of Food Science 66:936-939. https://doi.org/10.1111/j.1365-2621.2001.tb08215.x
  4. Bean, M.M., R.E Miller, B.O. Juliano, K.H. Norris, W.R. Hruschka and B.D. Webb. 1990. NIR and DSC characteristics of rice starch. Cereal Food World 35:834.
  5. Champagne, E.T., K.L. Aett, B.T. Vinyard, B.D. Webb, A.M. McClung and F.E. Barton. 1997. Effects of drying conditions, final moisture content and degree of milling on rice flavor. J. of Cereal Chemistry 74:566-570. https://doi.org/10.1094/CCHEM.1997.74.5.566
  6. Choi, H.C., H.C. Hong and B.H. Nahm. 1997. Physicochemical and structural characteristics of grain associated with palatability in japonica rice. Korean J. Breeding 29:15-27 (in Korean).
  7. Chun, A.R., D.H. Kim, M.R. Yoon, S.K. Oh and I.S. Choi. 2014. Quality characteristics of makgeolli of rice cultivars with different starch compositions. Korean J. Food&Nutr. 27(1):50-58 (in Korean).
  8. Delwiche, S.R., M.M. Bean, R.E. Miller, B.D. Webb and P.C. Williams. 1995. Apparent amylose content of milled rice by near-infrared reflectance spectrophotometry. Cereal Chemistry 72:182-187.
  9. Delwiche, S.R., K.S. McKenzie and B.D. Webb. 1996. Quality characteristics in rice by near-infrared relfecance analysis of whole grain muilled samples. J. of Cereal Chemistry 73:257-263.
  10. Gibson, T.S. and V.A. McCleary. 1996. A procedure to measure amylose in cereal starches and flours with concanavalin A. J. Cereal Science 25:111-119.
  11. Gomez K.A. 1979. Effect of environment on protein and amylose content of rice, chemical aspects of rice grain quality. IRRI. 59-68.
  12. Han, C.S. and M.Y. Natsuga. 1996. Development of a constituent prediction model of domestic rice using near-infrared reflectance analyzer(1). J. of Korean Soc. Agric. Mach. 21(2):198-210 (in Korean).
  13. Hwang, H.G., R.K. Cho, J.K. Sohn and S.K. Lee. 1994. Rapid evaluation of chemical components of rice grain using near-infrared spectroscopy. Korean J. Crop Sci. 39(1):7-14 (in Korean).
  14. Jiang, H.Y., Y.J. Zhu, L.M. Wee, J.R. Dai, T.M. Song, Y. L. Yan and S.J. Chen. 2007. Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize. Plant breeding 126:492-497. https://doi.org/10.1111/j.1439-0523.2007.01338.x
  15. Juliano, B.O. 1971. A simplified assay for milled-rice amylose. Cereal Science Today 16:334-340.
  16. Juliano, B.O. 1985. Criteria and tests for rice grain qualities. In Rice Chemistry and Technology, American Association of Cereal Chemists, Inc., MN (USA). pp. 443-524.
  17. Kim, B.J., E.H. Park and C.S. Jung. 1996. Effects of chemical contents variation in covered barley seed on near infrared reflectance spectroscopy. Korean J. Crop Sci. 41(3):354-361 (in Korean).
  18. Kim, H.I. 2004. Comparison of Korean and Japanese rice by NIR and chemical analysis. J. East Asian Soc. Dietary Life 14(2):135-144 (in Korean).
  19. Kim, H.J., S.Y. Kim, Y.S. Lee and Y.H. Kim. 2014. Determination of baicalein contents in Scutellaria baicalensis by NIRS. Korean J. Plant Res. 27(4):286-292 (in Korean). https://doi.org/10.7732/kjpr.2014.27.4.286
  20. Kim, J.H., S.B. Kim and T.Y. Kim. 2006. Noodle making characteristics of goami rice composite flours. Korean J. Community Living Science 17(2):61-68 (in Korean).
  21. Kim, J.S., M.H. Song, J.E. Choi, H.B. Lee and S.N. Ahn. 2008. Quantification of protein and amylose contents by near-infrared reflectance spectroscopy in aroma rice. Korean J. Food Sci. Technol. 40(6):603-610 (in Korean).
  22. Kim, J.S., Y.H. Cho, J.G. Gwag, K.H. Ma, Y.M. Choi, J.B. Kim, J.H. Lee, T.S. Kim, J.K. Cho and S.Y. Lee. 2008. Quantitative analysis of amylose and protein content of rice germplasm in RDA-genebank by near-infrared reflectance spectroscopy. Korean J. Crop Sci. 53(2):217-223 (in Korean).
  23. Ko, J.K., K.S. Lee, H.T. Shin and J.S. Shim. 1998. Characteristics of grain quality at different transplanting times among rice cultivars II. variation of some grain appearance and chemical components. Korean J. Plant Res. 11(1):64-69 (in Korean).
  24. Kwon, Y.R., M.H. Baek, D.C. Choi, J.S. Choi and Y.G. Choi. 2005. Determination of calibration curve for total nitrogen contents analysis in fresh rice leaves using visible and near-infrared spectroscopy. Korean J. Crop Sci. 50(6):394-399 (in Korean).
  25. Kwon, Y.R., S.H. Cho, Y.E. Song, J.H. Lee and C.H. Cho. 2006. Nondestructive measurement of chemical compositions in polished rice and brown rice using NIR spectra of hulled rice acquired in transmittance and reflectance modes. Korean J. Crop Sci. 51(5):451-457 (in Korean).
  26. Moon, S.S., K.H. Lee and R.K. Cho. 1994. Application of near-infrared reflectance spectroscopy in quality evaluation of domestic rice. Korean J. Food Sci. Technol. 26(6):718-725 (in Korean).
  27. Shu, Q.Y., D.X. Wu, Y.W. Xia, M.W. Gao and A. McClung. 1999. Calibration optimization for rice apparent amylose content by near-infrared reflectance spectroscopy (NIRS). J. of Zhejiang University (Agriculture & Life Science) 25:343-346.
  28. Son, J.R., J.H. Kim, J.I. Lee, J.K. Kim, H.G. Hwang and H.P. Moon. 2002. Trend and further of rice quality evaluation. Korean J. Crop Sci. 47:33-54 (in Korean).
  29. Song, J., J.H. Kim, D.S. Kim, C.K. Lee, J.T. Youn, S.L. Kim and S.J. Suh. 2008. Physicochemical properties of starches in japonica rices of different amylose content. Korean J. Crop Sci. 53(3):285-291 (in Korean).
  30. Song, L.S., Y.H. Kim, G.P. Kim, K.G. Ahn, Y.S. Hwang, I.K. Kang, S.W. Yoon, S.S. Lee, K.Y. Shin, W.Y. Lee, Y.S. Cho and M.G. Choung. 2014. Quantitative analysis of carbohydrate, protein, and oil contents of Korean foods using near-infrared reflectance spectroscopy. J. Korean Soc. Food Sci. Nutr. 43(3):425-430 (in Korean). https://doi.org/10.3746/jkfn.2014.43.3.425
  31. Song, Y.J., Y.E. Song, N.K. Oh, Y.G. Choi and K.C. Cho. 2006. Relationship between near-infrared reflectance spectra and mechanical sensory score of commercial brand rice produced in Jeonbuk. Korean J. of Crop Sci. 51(s):42-46 (in Korean).
  32. Williams, P. and K. Norris. 1987. Near-Infrared Technology in Agricultural and Food Industries. American Association of Cereal Chemists, Inc., MN (USA). p. 330.
  33. Windham, W., B.G. Lyon, E.T. Champagne, F.E. Barton, B.D. Webb, A.M. McClung, K.A. Moldenhauer, S. Linscombe and K.S. McKenzle. 1997. Prediction of cooked rice texture auality using near-infrared reflectance analysis of whole-grain milled samples. Cereal Chemistry 74:626-632. https://doi.org/10.1094/CCHEM.1997.74.5.626
  34. Yoo, J.S., H.S. Park, Y.C. Cho, B.K. Kim and K.Y. Ha. 2013. Comparison of physicochemical and textural properties of glutinous rice cultivars. Food Eng. Prog. 17(3):212-218 (in Korean). https://doi.org/10.13050/foodengprog.2013.17.3.212
  35. Yoon, M.R., J.S Lee, J.E. Kwak, J.H. Lee, J.B. Chun, C.I. Yang, J.H. Cho, M.J. Kim, C.K. Lee, B.K. Kim and W.H. Kim. 2015. Starch and pasting characteristics in relation to stickiness of rice cake using glutinous rice varieties. Korean J. Breed. Sci. 47(3):199-208 (in Korean). https://doi.org/10.9787/KJBS.2015.47.3.199

Cited by

  1. Changes of Anthocyanidin, Growth Characteristics and Brown Rice Yield of Red Colored Rice at Two Region of Eastern Coast in Gyeongsangbuk-do Province vol.30, pp.3, 2017, https://doi.org/10.7732/kjpr.2017.30.3.318
  2. 근적외선 분광분석기를 이용한 국내외 재래종 벼 유전자원의 아밀로스 및 단백질에 관한 대량 평가 체계구축 vol.30, pp.4, 2017, https://doi.org/10.7732/kjpr.2017.30.4.450
  3. Statistical Analysis of Amylose and Protein Content in Breeding Line Rice Germplasm Collected from East Asian Countries Based on Near-infrared reflectance spectroscopy vol.51, pp.4, 2019, https://doi.org/10.9787/kjbs.2019.51.4.298
  4. Statistical Analysis of Amylose and Protein Content in Breeding Line Rice Germplasm Collected from East Asian Countries Based on Near-infrared reflectance spectroscopy vol.51, pp.4, 2019, https://doi.org/10.9787/kjbs.2019.51.4.298
  5. 분광분석법을 이용한 형질전환 작물 판별 기술 현황 vol.39, pp.3, 2017, https://doi.org/10.5338/kjea.2020.39.3.31