DOI QR코드

DOI QR Code

A REMARK ON WEAKLY HYPONORMAL WEIGHTED SHIFTS

  • Kim, An Hyun (Department of Mathematics, Changwon National University) ;
  • Kwon, Eun Young (Department of Mathematics, Changwon National University)
  • Received : 2016.10.08
  • Accepted : 2017.02.27
  • Published : 2017.03.25

Abstract

In this note we consider weakly hyponormal weighted shift. In particular, we focus on the weak 4-hyponormality of the weighted shift with the Bergman tail. This is related to the open question of finding a polynomially hyponormal non-subnormal weighted shift.

Keywords

References

  1. A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc., 103 (1988), 417-423. https://doi.org/10.1090/S0002-9939-1988-0943059-X
  2. J. Bram,Subnormal operators, Duke Math. J., 22(1955), 75-94. https://doi.org/10.1215/S0012-7094-55-02207-9
  3. J.B. Conway,The Theory of Subnormal Operators, Math. Surveys and Monographs, 36, Amer. Math. Soc., Providence, 1991.
  4. J.B. Conway and W. Szymanski, Linear combination of hyponormal operators, Rocky Mountain J. Math. 18(1988), 695-705. https://doi.org/10.1216/RMJ-1988-18-3-695
  5. R.E. Curto,Quadratically hyponormal weighted shifts, Integral Equations Operator Theory, 13(1990), 49-66. https://doi.org/10.1007/BF01195292
  6. R.E. Curto,Joint hyponormality:A bridge between hyponormality and subnormality, Proc. Sympos. Pure Math., 51, Part 2, Amer. Math. Soc., Providence, (1990), pp. 69-91.
  7. R.E. Curto and W.Y. Lee, $\kappa$-hyponormality of nite perturbations of unilateral weighted shifts Trans. Amer. Math. Soc. 357(12)(2005), 4719-4737. https://doi.org/10.1090/S0002-9947-05-04029-8
  8. R.E. Curto, P.S. Muhly and J. Xia, Hyponormal pairs of commuting operators, Contributions to Operator Theory and Its Applications (Mesa,AZ, 1987) (I. Gohberg, J.W. Helton and L. Rodman, eds.), Operator Theory: Advances and Applications, 35, Birkhauser, Basel-Boston, (1988), 1-22.
  9. R.E. Curto and M. Putinar, Existence of non-subnormal polynomially hyponormal operators, Bull. Amer. Math. Soc., 25(1991), 373-378. https://doi.org/10.1090/S0273-0979-1991-16079-9
  10. R.E. Curto and M. Putinar,Nearly subnormal operators and moment problems, J. Funct. Anal. 115(1993), 480-497. https://doi.org/10.1006/jfan.1993.1101
  11. I.B. Jung and S.S. Park,Quadratically hyponormal weighted shift and their examples, Integral Equations Operator Theory, 36(2000), 2343-2351.
  12. A. Shields,Weighted shift operators and analytic function theory, Math. Surveys, 13(1974), 49-128.