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A REMARK ON WEAKLY HYPONORMAL WEIGHTED

SHIFTS

An Hyun Kim* and Eun Young Kwon

Abstract. In this note we consider weakly hyponormal weighted
shift. In particular, we focus on the weak 4-hyponormality of
the weighted shift with the Bergman tail. This is related to the
open question of finding a polynomially hyponormal non-subnormal
weighted shift.

1. Introduction

Let H and K be infinite dimensional complex Hilbert spaces. Let
B(H,K) be the set of bounded linear operators from H to K. We also
write briefly B(H) := B(H,H). An operator T ∈ B(H) is said to be
normal if T ∗T = TT ∗ and is said to be hyponormal if T ∗T ≥ TT ∗.
Also an operator T ∈ B(H) is said to be subnormal if T has a normal
extension, in other words, T = N |H, where N is normal on some Hilbert
space K ⊇ H. We can easily check that if T is subnormal then T is
hyponormal. We recall that if α : α0, α1, · · · is a bounded sequence
of positive numbers (this is called weights or weighted sequence), then
the (unilateral) weighted shift Wα associated with α is the operator on
`2(Z+) defined by Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is
the canonical orthonormal basis for `2 (cf. [12]). We can easily check
that Wα can never be normal, and that Wα is hyponormal if and only
if the weighted sequence {αn} is monotonically increasing. In general
it is so hard to check the subnormality of general operators because we
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should find an extension of being normal. The Bram-Halmos criterion
for subnormality states that an operator T is subnormal if and only if∑

i,j

〈T ixj , T jxi〉 ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([2], [3, II.1.9]). It is well
known that this is equivalent to the following condition:

(1)


I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k

 ≥ 0 (all k ≥ 1).

We note that the positivity condition (1) for k = 1 is equivalent to the
hyponormality of T , while subnormality requires the validity of (1) for
all k. Let [A,B] := AB − BA denote the commutator of two operators
A and B, and define T to be k-hyponormal whenever the k× k operator
matrix

(2) Mk(T ) := ([T ∗j , T i])ki,j=1

is positive. An application of the Choleski algorithm for operator ma-
trices shows that the positivity of (2) is equivalent to the positivity of
the (k+ 1)× (k+ 1) operator matrix in (1); the Bram-Halmos criterion
can be then rephrased as saying that T is subnormal if and only if T is
k-hyponormal for every k ≥ 1 ([8]).

We recall ([1], [8], [3], [4]) that T ∈ B(H) is called weakly k-hyponormal
if

LS(T, T 2, · · · , T k) :=


k∑
j=1

αjT
j : α = (α1, · · · , αk) ∈ Ck


consists entirely of hyponormal operators, or equivalently, Mk(T ) is
weakly positive, i.e., ([8])

(3)
〈
Mk(T )

λ0x...
λkx

 ,

λ0x...
λkx

〉 ≥ 0 for x ∈ H and λ0, · · · , λk ∈ C.

If k = 2, then T is said to be quadratically hyponormal, and if k = 3
then T is said to be cubically hyponormal. Similarly, T ∈ B(H) is said to
be polynomially hyponormal if p(T ) is hyponormal for every polynomial
p ∈ C[z]. It is known that k-hyponormal ⇒ weakly k-hyponormal, but
the converse is not true in general. The classes of (weakly) k-hyponormal
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operators have been studied in an attempt to bridge the gap between
subnormality and hyponormality (cf. [5], [6], [7], [8] and etc)).

In spite of many successful works for weighted sfits, no concrete ex-
ample of a weighted shift which is polynomially hyponormal, but not
subnormal has yet been found (the existence of such weighted shifts
was shown in [9] and [10]). In fact, until now, we were unable to get
a weighted shift which is weakly 4-hyponormal, but not subnormal. In
this note we examine this question.

2. The main result

If α :
√

1
2 ,
√

2
3 ,
√

3
4 ,
√

4
5 ,
√

5
6 , · · · ,

√
n
n+1 , · · · is a weighted sequence,

then Wα is called the Bergman shift. It is well known that the Bergman
shift is subnormal. On the other hand, if

(4) α :
3

4
,

√
2

3
,

√
3

4
,

√
4

5
,

√
5

6
, · · ·

is a weight sequence with the Bergman tail then it is known that

(i) Wα is 2-hyponormal (cf. [5]);
(ii) Wα is cubically hyponormal (cf. [11]).

Now we would like to suggset the following:

Conjecture 2.1. If α : 3
4 ,
√

2
3 ,
√

3
4 ,
√

4
5 ,
√

5
6 , · · · is a weight sequence

with the Bergman tail then Wα is polynomially hyponormal.

In this note we examine the weak 4-hyponormality of the above shift
(4).

Let Wα be a hyponormal weighted shift with weight sequence α ≡
{αn}∞n=0. Let Pn be the orthogonal projection onto the subspace gener-
ated by {e0, · · · , en}. For a1, · · · , ak−1 ∈ C, we write

D(a1, · · · , ak−1) := [M∗,M ]

(where M := Wα + a1W
2
α + · · ·+ ak−1W

k
α) and we let

Dn(a1, · · · , ak−1) := PnD(a1, · · · , ak−1)Pn.
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For i = 1, 2, · · · ; j = 1, 2, · · · , define

βn(i, j) =



j−i−1∏
p=0

α2
n+p

 j−1∏
p=j−i

α2
n+p −

i∏
p=1

α2
n−p

2

(j ≥ i+ 1)

n+i∏
p=n

α2
p −

i∏
p=1

α2
n−p (j = i)

βn(j, i) (j < i)

,

and, for notational convenience, α−j = 0 for j ∈ N.

Then we have:

Theorem 2.2. Let Wα be a hyponormal weighted shift. Then the
following are equivalent.

(i) Wα is weakly k-hyponormal;
(ii) For any a1, · · · , ak−1 ∈ C and x = (x0, x1, · · · ) ∈ l2,

F (x, a1, · · · , ak−1) ≡
k−1∑
i=1

〈
Θi


ak−ix0
ak−i+1x1

...
ak−1xi−1

 ,


ak−ix0
ak−i+1x1

...
ak−1xi−1


〉

+
∞∑
i=0

〈
∆i


xi

a1xi+1
...

ak−1xi+k−1

 ,


xi

a1xi+1
...

ak−1xi+k−1


〉
≥ 0,

where Θi is an (i × i) hermitian matrix whose (m,n)- entry, Θi(m,n),
is given by

Θi(m,n) :=

{√
βm−1(k − i+m, k − i+ n) (m < n)

βm−1(k − i+m, k − i+m) (m = n)

and ∆i is a (k × k) hermitian matrix whose (m,n)-entry, ∆i(m,n), is
given by

∆i(m,n) :=

{√
βi+m−1(m,n) (m < n)

βi+m−1(m,m) (m = n)
.
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Proof. Observe

Dn(a1, · · · , ak−1) = PnD(a1, · · · , ak−1)Pn

= Pn

 ∑
1≤i,j≤k

ai−1aj−1[W
∗i
α , W

j
α]

Pn (a0 := 1)

and

〈
[W ∗iα , W

j
α]en en

〉
=



j−i−1∏
p=0

αn+p

 j−1∏
p=j−i

α2
n+p −

i∏
p=1

α2
n−p

 (j ≥ i+ 1)

n+j∏
p=n

α2
p −

j∏
p=1

α2
n−p (j = i)

=

{√
βn(i, j) (j ≥ i+ 1)

βn(i, i) (j = i)
.

Thus if xn := (x0, x1, · · · , xn) ∈ Cn+1 then

〈
Pn[W ∗iα , W

j
α]Pnxn, xn

〉
=


n−j+i∑
s=0

√
βs(i, j) xs xs+j−i (j ≥ i+ 1)

n∑
s=0

βs(i, i) |xs|2 (j = i).

Then a straightforward calculation shows that

〈Dn(a1, · · · , ak−1)xn, xn〉 =

〈
Ωn


1
a1
...

ak−1

 ,


1
a1
...

ak−1


〉
,

where Ωn is a (k × k) hermitian matrix whose (i, j)-entry, Ωn(i, j), is
given by

Ωn(i, j) =


n−j+i∑
s=0

√
βs(i, j) xsxs+j−i (j ≥ i+ 1)

n∑
s=0

βs(i, i) |xs|2 (j = i)

.
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Therefore for any a1, · · · , ak−1 ∈ C and x ∈ l2,

〈D(a1, · · · , ak−1)x, x〉 =

〈
Ω


1
a1
...

ak−1

 ,


1
a1
...

ak−1


〉
,

where Ω is a (k× k) hermitian matrix whose (i, j)-entry Ω(i, j) is given
by

Ω(i, j) =


∞∑
s=0

√
βs(i, j) xsxs+j−i (j ≥ i+ 1)

∞∑
s=0

βs(i, i) |xs|2 (j = i)

.

Again a direct computation shows that

〈D(a1, · · · , ak−1)x, x〉 = F (x, a1, · · · , ak−1).

If k = 4 in Theorem 2.2, we have:

Corollary 2.3. Let Wα is a hyponormal weighted shift. Then the
following are equivalent:

(i) Wα is weakly 4-hyponormal;
(ii) For any a1, a2, a3 ∈ C, x = (x0, x1, · · · ) ∈ l2,

(5)

F (x, a1, a2, a3) := |a3|2 (β0(4, 4)) |x0|2 +

〈
Θ2

(
a2x0
a3x1

)
,

(
a2x0
a3x1

)〉

+

〈
Θ3

a1x0a2x1
a3x2

 ,

a1x0a2x1
a3x2

〉+
∞∑
i=0

〈
∆i


xi

a1xi+1

a2xi+2

a3xi+3

 ,


xi

a1xi+1

a2xi+2

a3xi+3


〉
≥ 0



A remark on weakly hyponormal weighted shifts 89

where

Θ2 :=

(
β0(3, 3)

√
β0(3, 4)√

β0(3, 4) β1(4, 4)

)
,

Θ3 :=

 β0(2, 2)
√
β0(2, 3)

√
β0(2, 4)√

β0(2, 3) β1(3, 3)
√
β1(3, 4)√

β0(2, 4)
√
β1(3, 4) β2(4, 4)



∆i :=


βi(1, 1)

√
βi(1, 2)

√
βi(1, 3)

√
βi(1, 4)√

βi(1, 2) βi+1(2, 2)
√
βi+1(2, 3)

√
βi+1(2, 4)√

βi(1, 3)
√
βi+1(2, 3) βi+2(3, 3)

√
βi+2(3, 4)√

βi(1, 4)
√
βi+1(2, 4)

√
βi+2(3, 4) βi+3(4, 4)


(i = 0, 1, · · · ).

We also have:

Corollary 2.4. If α : 3
4 ,
√

2
3 ,
√

3
4 ,
√

4
5 ,
√

5
6 , · · · is a weight sequence

with the Bergman tail then every matrix Θ2, Θ3 and ∆i (i = 0, 1, · · · )
in the sum (5) is positive semi-definite except for ∆1.

Proof. Since α has a Bergman tail from the second weight α1, it
follows that ∆2 ≥ 0 for all i ≥ 2 because ∆i (i ≥ 2) is independent
of α0. Now a direct calculation for the remaining matrices gives the
result.

Remark 2.5. For the weak 4-hyponormality of the weighted shift
(4) with the Bergman tail, in view of Corollary 2.4, it will suffice to
show that
(6)

B(4) := |a3|2 (β0(4, 4)) |x0|2 +

〈
Θ2

(
a2x0
a3x1

)
,

(
a2x0
a3x1

)〉

+

〈
Θ3

a1x0a2x1
a3x2

 ,

a1x0a2x1
a3x2

〉+

4∑
i=0

〈
∆i


xi

a1xi+1

a2xi+2

a3xi+3

 ,


xi

a1xi+1

a2xi+2

a3xi+3


〉

is positive semi-definite. To do so we replace the (2,2)-entry of Θ2,
Θ3, ∆0 and the (1,1)-entry of ∆2,∆3,∆4 by extremal values so that
each determinant of those matrices is zero and the resulting matrix is

denoted by Θ̃2, Θ̃3, and ∆̃i (i = 0, 2, 3, 4), respectively and the resulting
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remainder is denoted by δ1|a3|2|x1|2, δ2|a2|2|x1|2, δ3|a3|2|x1|2, δ4|x2|2,
δ5|x3|2 and δ6|x4|2, respectively. Then we can write

B(4) = |a3|2 (β0(4, 4)) |x0|2 +

〈
Θ̃2

(
a2x0
a3x1

)
,

(
a2x0
a3x1

)〉

+

〈
Θ̃3

a1x0a2x1
a3x2

 ,

a1x0a2x1
a3x2

〉+
∑
1≤i≤4
i 6=1

〈
∆̃i


xi

a1xi+1

a2xi+2

a3xi+3

 ,


xi

a1xi+1

a2xi+2

a3xi+3


〉

+

〈
∆δ

1


x1
x2
x3
x4

 ,


x1
x2
x3
x4


〉
,

where

∆δ
1 :=


β1(1,1)+δ1|a3|2+δ2|a2|2+δ3|a1|2 a1

√
β1(1,2) a2

√
β1(1,3) a3

√
β1(1,4)

a1
√
β1(1,2) |a1|2β2(2,2)+δ4 a1a2

√
β2(2,3) a1a3

√
β2(2,4)

a2
√
β1(1,3) a1a2

√
β2(2,3) |a2|2β3(3,3)+δ5 a2a3

√
β3(3,4)

a3
√
β1(1,4) a1a3

√
β2(2,4) a2a3

√
β3(3,4) |a3|2β4(4,4)+δ6

 .

So for the weak 4-hyponormality of the weighted shift (4) with the
Bergman tail, it suffices to prove that ∆δ

1 is positive semidefinite for
any a1, a2, a3 ∈ C.
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