DOI QR코드

DOI QR Code

The Phase Transition and Thermochromic Characteristics of W/Mg-codoped Monoclinic VO2 Nanoparticle and Its Composite Film

  • Park, Heesun (Department of Chemistry, Pukyong National University) ;
  • Kim, Jongmin (Department of Chemistry, Pukyong National University) ;
  • Jung, Young Hee (Research Laboratory, Mapro, Inc. Hanlim) ;
  • Kim, Yeong Il (Department of Chemistry, Pukyong National University)
  • Received : 2017.02.08
  • Accepted : 2017.02.13
  • Published : 2017.04.20

Abstract

Monoclinic $VO_2(M)$ nanoparticles codoped with 1.5 at. % W and 2.9 at. % Mg were synthesized by the hydrothermal treatment and post-thermal transformation method of $V_2O_5-H_2C_2O_4-H_2O$ with $Na_2WO_4$ and $Mg(NO_3)_2$. The composite thin film of the W/Mg-codoped $VO_2(M)$ with a commercial acrylic block copolymer was also prepared on PET substrate by wet-coating method. The reversible phase transition characteristics of the codoped $VO_2(M)$ nanoparticles and the composite film were investigated from DSC, resistivity and Vis-NIR transmittance measurements compared with the undoped and Wdoped $VO_2(M)$ samples. Mg-codoping into W-doped $VO_2(M)$ nanoparticles synergistically enhanced the transition characteristics by increasing the sharpness of transition while the transition temperature ($T_c$) lowered by W-doping was maintained. The codoped composite film showed the prominently enhanced NIR switching efficiency compared to only W-doped $VO_2(M)$ film with a lowered $T_c$.

Keywords

References

  1. (a) Kamalisarvestani, M; Saidur, R.; Mekhilef, S.; Javadi, F. S. Ren. Sust. Ener. Rev. 2013, 26, 353. https://doi.org/10.1016/j.rser.2013.05.038
  2. (b) Gao, Y.; Luo, H.; Zhang, Z.; Kang, L.; Chen, Z.; Du, J.; Kanehira, M.; Cao, C. Nano Ener. 2012, 1, 221. https://doi.org/10.1016/j.nanoen.2011.12.002
  3. (c) Granqvist, C. G.; Lansaker, P. C.; Mlyuka, N. R.; Niklasson, G. A.; Avendano, E. Sol. Energy. Mater. Sol. Cells 2009, 93, 2032. https://doi.org/10.1016/j.solmat.2009.02.026
  4. Morin, F. J. Phys. Rev. 1959, 3, 34.
  5. Takei, H.; Koide, S. J. Phys. Soc. Japan 1966, 21, 1010. https://doi.org/10.1143/JPSJ.21.1010
  6. Koide, S.; Takei, H. J. Phys. Soc. Japan 1967, 22, 946. https://doi.org/10.1143/JPSJ.22.946
  7. Livage, J. Solid State Ionics 1996, 86, 935.
  8. Dachuan, Y.; Niankan, X.; Jingyu, Z.; Xiulin, Z. J. Phys. D: Appl. Phys. 1996, 29, 1051. https://doi.org/10.1088/0022-3727/29/4/017
  9. Fuls, E. N.; Hensler, D. H.; Ross, A. R. Appl. Phys. Lett 1967, 10, 199. https://doi.org/10.1063/1.1754909
  10. (a) Goodenough, J. B. J. Solid State Chem. 1971, 3, 490. https://doi.org/10.1016/0022-4596(71)90091-0
  11. (b) Beteile, F.; Livage, J. J. Sol-Gel Sci. Technol. 1998, 13, 915. https://doi.org/10.1023/A:1008679408509
  12. (a) Horlin, T.; Nikelwski, T.; Nygren, M. Mat. Res. Bull. 1972, 7, 1515. https://doi.org/10.1016/0025-5408(72)90189-4
  13. (b) Tang, C; Georgopoulos, P.; Fine, M. E. Cohen, J. B. Phys. Rev. B 1985, 15, 31.
  14. (c) Sobhan, M. A.; Kivaisi, R. T.; Stjerna, B.; Granqvist, C. G. Sol. Energy Mater. Sol. Cells 1996, 44, 451. https://doi.org/10.1016/S0927-0248(95)00051-8
  15. (d) Li, G.; Chao, K.; Peng, H.; Chen, K.; Zhang, Z. Inorg. Chem. 2007, 46, 5787. https://doi.org/10.1021/ic070339n
  16. (a) Burkhardt, W.; Christmann, T.; Meyer, B. K.; Niessner, W.; Schalch, D.; Scharmann, A. Thin Solid Films 1999, 345, 229. https://doi.org/10.1016/S0040-6090(98)01406-0
  17. (b) Kiri, P.; Warwick, M. E. A.; Ridley, I.; Binions, R. Thin Solid Films 2011, 520, 1363. https://doi.org/10.1016/j.tsf.2011.01.401
  18. (c) Dai, L.; Chen, S.; Liu, J.; Gao, Y.; Zhou, J.; Chen, Z.; Cao, C.; Luo, H.; Kanehira, M. Phys. Chem. Chem. Phys. 2013, 15, 11723. https://doi.org/10.1039/c3cp51359a
  19. (a) Mlyuka, N. R.; Niklasson, G. A.; Granqvist, C. G. Appl. Phys. Lett. 2009, 95, 171909. https://doi.org/10.1063/1.3229949
  20. (b) Li, S.-Y.; Mlyuka, N. R.; Primetzhofer, D.; Hallen, A.; Possnert, G.; Niklasson, G. A. Granqvist, C. G. App. Phys. Lett. 2013, 103, 161907. https://doi.org/10.1063/1.4826444
  21. (c) Zhou, J.; Gao, Y.; Liu, X.; Chen, Z.; Dai, L.; Cao, C.; Luo, H.; Kanahira, M.; Sun, C.; Yan, L. Phys. Chem. Chem. Phys. 2013, 15, 7505. https://doi.org/10.1039/c3cp50638j
  22. (a) Takahashi, I.; Hibino, M.; Kudo, T. J. Appl. Phys. 2001, 40, 1391. https://doi.org/10.1143/JJAP.40.1391
  23. (b) Burkhardt, W.; Christmann, T.; Franke, S.; Kriegseis, W.; Meister, D.; Meyer, B. K.; Niessner, W.; Schalch, D.; Scharmann, A. Thin Solid Films 2002, 402, 226. https://doi.org/10.1016/S0040-6090(01)01603-0
  24. (c) Soltani, M.; Chaker, M.; Haddad, E.; Kruzelecky, R. V.; Margot, J. Appl. Phys. Lett. 2004, 85, 1958. https://doi.org/10.1063/1.1788883
  25. (d) Jiazhen, Y.; Yue, Z.; Wanxia, H. Thin Solid Films 2008, 516, 8554. https://doi.org/10.1016/j.tsf.2008.05.021
  26. (e) Kong, F. Y.; Li, M.; Zhang, J.; Xu, Y.; Li, D. B.; Zeng, Z.; Li, G. H. Open J. of Adv. Mater. Res. 2013, 1, 1. https://doi.org/10.12966/ojamr.05.01.2013
  27. Wang, N.; Liu, S.; Zeng, X. T.; Magdassi, S.; Long, Y. J. Mater. Chem. C 2015, 3, 6771. https://doi.org/10.1039/C5TC01062D
  28. (a) Alie, D; Gedvilas, L.; Wang, Z.; Tenent, R.; Engtrakul, C.; Yan, Y.; Shaheen, S. E.; Dilon, A. C.; Ban, C. J. Solid State Chem. 2014, 212, 237. https://doi.org/10.1016/j.jssc.2013.10.023
  29. (b) Ji, S.; Zhao, Y.; Zhang, F.; Jun, P. J. Crys. Growth 2010, 312, 282, https://doi.org/10.1016/j.jcrysgro.2009.10.026
  30. (c) Ji, S.; Zhang, F.; Jin, P. Res. Chem. Intermed. 2011, 37, 493. https://doi.org/10.1007/s11164-011-0290-2
  31. (d) Zhang, Y.; Zhang, J.; Zhang, X.; Deng, Y.; Zhong, Y.; Huang, C.; Liu, X.; Liu, X.; Mo, S. Ceram. Int. 2013, 39, 8363. https://doi.org/10.1016/j.ceramint.2013.04.016
  32. (a) Zhang, K.-F.; Liu, X.; Su, Z.-X.; Li, H.-L. Mater. Lett. 2007, 61, 2644 https://doi.org/10.1016/j.matlet.2006.10.039
  33. (b) Liu, X.; Xie, G.; Huang, C.; Xu, Q.; Zhang, Y.; Luo, Y. Mater. Lett. 2008, 62, 1878 https://doi.org/10.1016/j.matlet.2007.10.022
  34. (c) Li, G.; Chao, K.; Peng, H.; Chen, K.; Zhang, Z. Inorg. Chem. 2007, 46, 5787. https://doi.org/10.1021/ic070339n
  35. JCPDS 81-2392.
  36. JCPDS 43-1051, 72-0514, 82-0661.
  37. (a) Horlin, T.; Niklewski, T.; Nygren, M. Mater. Res. Bull. 1973, 8, 179. https://doi.org/10.1016/0025-5408(73)90170-0
  38. (b) Parkin, I.; Manning, T. D. J. Chem. Educ. 2006, 83, 393. https://doi.org/10.1021/ed083p393
  39. (c) Chae, B. G.; Kim, H. T.; Yun, S. J. Electrochem. Solid-State Lett. 2008, 11, 53.
  40. Lopez, R.; Haynes, T. E.; Boatner, L. A.; Feldman, L. C.; Haglund, R. F. Phys. Rev. B: Condens. Matter, 2002, 65, 224113. https://doi.org/10.1103/PhysRevB.65.224113
  41. Verleur, H.; Barker, A. Berglund, C. Phys. Rev. 1968, 172, 788. https://doi.org/10.1103/PhysRev.172.788

Cited by

  1. Synthesis and Characterization of Nb, Mo-doped and Nb/Mo-codoped Monoclinic VO2 Nanoparticles and Their Thin Films by Hydrothermal/Post-Thermal Transformation and Wet-Coating Method vol.63, pp.2, 2017, https://doi.org/10.5012/jkcs.2019.63.2.94
  2. High School Exploration of a Phase Change Material as a Thermal Energy Storage vol.65, pp.2, 2021, https://doi.org/10.5012/jkcs.2021.65.2.145