DOI QR코드

DOI QR Code

증진제 첨가에 따른 Pt/Al2O3촉매의 CH4-SCR 반응특성 연구

Effect of Promoting Metal in Pt/Al2O3 Catalyst on Selective Catalytic Reduction of NO Using CH4

  • 원종민 (경기대학교 환경에너지공학과 일반대학원) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Won, Jong Min (Department of Environmental Energy Engineering, general graduate school, Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, general graduate school, Kyonggi University)
  • 투고 : 2016.11.09
  • 심사 : 2016.12.08
  • 발행 : 2017.02.10

초록

본 연구에서는 다양한 증진제에 따른 $CH_4-SCR$ 반응특성을 확인하기 위하여 $Pt/Al_2O_3$를 기본으로 한 촉매에 알칼리, 알칼리 토류 금속을 담지하여 습식함침법으로 제조한다. 본 연구를 통해 $Pt/Al_2O_3$ 촉매에 Na를 담지시킬 경우 Pt와 Na 원자간 electronegative gap의 발생으로 Pt의 valence state 변화를 일으키며, 금속상 Pt의 비율이 증가됨을 확인할 수 있다. 또한 Na 첨가를 최적화시켜 제조한 촉매의 금속상 Pt종은 촉매표면에서 NO species 흡착 증진과 환원제로 사용되는 $CH_4$$CO_2$로의 산화를 억제시킨다. 이때, Na/Pt의 mole ratio는 4.0이 최적화이며, $CH_4-SCR$ 효율이 가장 우수하다.

A series of Pt-based ${\gamma}-Al_2O_3$ catalysts promoted with several alkali and alkaline earth metals were prepared by a wet impregnation method. We confirmed that the addition of Na to $Pt/{\gamma}-Al_2O_3$ could cause a change in the oxidation state of Pt through an electronegative gap between Pt and Na atom, and increase the ratio of the metallic Pt. The metallic Pt species made by adding an optimum Na content improved the adsorption of NO species on the catalyst surface and restrained the oxidation of $CH_4$ to $CO_2$. When molar ratio of Na/Pt was 4.0, the highest catalytic activity could be obtained.

키워드

참고문헌

  1. S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, and W. Weisweiler, Effect of oxygen concentration on the NOx reduction with ammonia over $V_2O_5-WO_3/TiO_2$ catalyst, Catal. Today, 208, 208-214 (2006).
  2. J. Chen and R. Yang, Mechanism of poisoning of the $V_2O_5/TiO_2$ catalyst for the reduction of NO by $NH_3$, J. Catal., 125, 411-420 (1990). https://doi.org/10.1016/0021-9517(90)90314-A
  3. K. N. Rao and H. P. Ha, $SO_2$ promoted alkali metal doped $Ag/Al_2O_3$ catalysts for $CH_4$-SCR of NOx, Appl. Catal. A, 433, 162-169 (1992).
  4. F. Lonyi, J. Valyon, L. Gutierrez, M. A. Ulla, and E. A. Lombardo, The SCR of NO with $CH_4$ over Co-, Co,Pt-, and H-mordenite catalysts, Appl. Catal. B, 73, 1-10 (2007). https://doi.org/10.1016/j.apcatb.2006.11.017
  5. J. M. Gsrcia-Cortes, J. Perez-Ramirez, J. N. Rouzaud, A. R. Vaccaro, M. J. Illan-omez, and C. Salinas-Martinez de Lecea, On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts, On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts, J. Catal., 218, 111-122 (2003). https://doi.org/10.1016/S0021-9517(03)00088-5
  6. M. Konsolakisa, I. V. Yentekakisa, G. Pekridisb, N. Kaklidisb, A. C. Psarrasc, and G. E. Marnellos, Insights into the role of $SO_2\;and\;H_2O$ on the surface characteristics and de-$N_2O$ efficiency of $Pd/Al_2O_3$ catalysts during $N_2O$ decomposition in the presence of $CH_4$ and $O_2$ excess, Appl. Catal. B, 138, 191-198 (2013).
  7. H. Zhanga, L. Li, N. Li, A. Wang, and X. Wang, In situ FT-IR investigation on the selective catalytic reduction of NO with $CH_4$ over Pd/sulfated alumina catalyst, Appl. Catal. B, 110, 171-177 (2010).
  8. F. Lonyi, H. E. Solt, J. Valyona, A. Boix, and L. B. Gutierrez, The activation of NO and $CH_4$ for NO-SCR reaction over In- and Co-containing H-ZSM-5 catalysts, J. Mol. Catal. A, 345, 75-80 (2011). https://doi.org/10.1016/j.molcata.2011.05.021
  9. P. J. Smeets, Q. Meng, S. Corthals, H. Leeman, and R. A. Schoonheydt, Co-ZSM-5 catalysts in the decomposition of $N2_O$ and the SCR of NO with $CH_4$: Influence of preparation method and cobalt loading, Appl. Catal. B, 84, 505-513 (2008). https://doi.org/10.1016/j.apcatb.2008.05.002
  10. T. V. Myronyuk and S. N. Orlyk, Role of redox and acidic properties of $CoO/ZrO_2(SO_4\;^{2-})$ catalysts in $CH_4$-SCR of NO, Catal. Today, 119, 152-155 (2007). https://doi.org/10.1016/j.cattod.2006.08.033
  11. S. S. Kim, S. H. Choi, S. M. Lee, and S. C. Hong, Enhanced catalytic activity of $Pt/Al_2O_3$ on the $CH_4$ SCR, J. Ind. Eng. Chem., 18, 272-276 (2012). https://doi.org/10.1016/j.jiec.2011.11.041
  12. P. Vernoux, A.-Y. L. L. Cocq, and F. Gaillard, Effect of the addition of Na to $Pt/Al_2O_3$ catalysts for the reduction of NO by $C_3H_8\;and\;C_3H_6$ under lean-burn conditions, J. Catal., 219, 247-257 (2003). https://doi.org/10.1016/S0021-9517(03)00200-8
  13. M. C. Campa, V. Indovinaa, and D. Pietrogiacomi, The selective catalytic reduction of $N_2O\;with\;CH_4$ on Na-MOR and Na-MFI exchanged with copper, cobalt or manganese, Appl. Catal. B, 111, 90-95 (2012).
  14. R. Burch and T. C. Watling, The effect of promoters on $Pt/Al_2O_3$ catalysts for the reduction of NO by $C_3H_6$ under lean-burn conditions, Appl. Catal. B, 11, 207-216 (1997). https://doi.org/10.1016/S0926-3373(96)00043-4
  15. Y. Yazawa, H. Yoshida, S. Komai, and T. Hattori, The additive effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the electronegativity of additives, Appl. Catal. A, 233, 113-124 (2002). https://doi.org/10.1016/S0926-860X(02)00129-1
  16. M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, Formation of Al-doped ZnO films by dc magnetron reaction sputtering, Mater. Lett., 48, 194-198 (2001). https://doi.org/10.1016/S0167-577X(00)00302-5
  17. R. Burch and T. C. Watling, The difference between alkanes and alkenes in the reduction of NO by hydrocarbons over Pt catalysts under lean-burn conditions, Catal. Lett., 43, 19-23 (1997). https://doi.org/10.1023/A:1018974102756
  18. A. S. Ivanova, E. M. Slavinskaya, R. V. Gulyaev, V. I. Zaikovskii, O. A. Stonkus, I. G. Danilova, L. M. Plyasova, I. A. Polukhina, and A. I. Boronin, Metal-support interactions in $Pt/Al_2O_3\;and\;Pd/Al_2O_3$ catalysts for CO oxidation, Appl. Catal. B, 97, 57-71 (2010). https://doi.org/10.1016/j.apcatb.2010.03.024
  19. C. G. Vayenas and S. Brosda, C. Pliangos, Rules and mathematical modeling of electrochemical and chemical promotion: 1. Reaction classification and promotional rules, J. Catal., 203, 329-350 (2001). https://doi.org/10.1006/jcat.2001.3348
  20. N. D. Lang, S. Holloway, and J. K. Norskov, Electrostatic adsorbate-adsorbate interactions: The poisoning and promotion of the molecular adsorption reaction, Surf. Sci., 150, 24-38 (1985). https://doi.org/10.1016/0039-6028(85)90208-0
  21. R. A. Comelli, S. A. Canavese, C. A. Querini, and N. S. Figoli, Coke deposition on platinum promoted $WO_{x}-ZrO_2$ during n-hexane isomerization, Appl. Catal. A, 182, 275-283 (1999). https://doi.org/10.1016/S0926-860X(99)00024-1
  22. D. Duprez, M. Hadjaissa, and J. Barbier, Effect of steam on the coking of platinum catalysts I. Inhibiting effect of steam at low partial pressure for the dehydrogenation of cyclopentane and the coking reaction, Appl. Catal., 49, 67-74 (1989). https://doi.org/10.1016/S0166-9834(00)81422-0