DOI QR코드

DOI QR Code

Effect of magnetic field on wave propagation in cylindrical poroelastic bone with cavity

  • Farhan, A.M. (Physics Department, Faculty of Science, Jazan University)
  • Received : 2016.04.29
  • Accepted : 2017.01.09
  • Published : 2017.02.25

Abstract

In this paper, the wave propagation in an infinite poroelastic cylindrical bone with cavity is studied. An exact closed form solution is presented by employing an analytical procedure. The frequency equation for poroelastic bone is obtained when the boundaries are stress free and is examined numerically. The magnitude of the frequency equation, wave velocity and attenuation coefficient are calculated for poroelastic bone for different values of magnetic field, density and frequency. In wet bone little frequency dispersion was observed, in contrast to the results of earlier studies. Such a model would in particular be useful in large-scale parametric studies of bone mechanical response. Comparison was made with the results obtained in the presence and absence of magnetic field. The results indicate that the effect of magnetic field, density and frequency on wave propagation in poroelastic bone are very pronounced.

Keywords

References

  1. Abd-Alla, A.M. and Abo-Dahab, S.M. (2013), "Effect of magnetic field on poroelastic bone model for internal remodeling", Appl. Math. Mech., 34, 889-906. https://doi.org/10.1007/s10483-013-1715-6
  2. Abd-Alla, A.M. and Yahya, G.A. (2013), "Wave propagation in a cylindrical human long wet bone", J. Comput. Theor. Nanosci., 10, 750-755. https://doi.org/10.1166/jctn.2013.2765
  3. Abd-Alla, A.M., Abo-Dahab, S.M. and Bayones, F.S. (2015), "Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field", Struct. Eng. Mech., 53, 277-296. https://doi.org/10.12989/sem.2015.53.2.277
  4. Abd-Alla, A.M., Abo-Dahab, S.M. and Mahmoud S.R. (2011), "Wave propagation modeling in cylindrical human long wet bones with cavity", Meccanica, 46, 1413-1428. https://doi.org/10.1007/s11012-010-9398-5
  5. Abo-Dahab, S.M., Abd-Alla, A.M. and Alqosami, S. (2014), "Effect of rotation on wave propagation in hollow poroelastic circular cylinder", Math. Probl. Eng., 2014, Article ID 879262, 16.
  6. Abo-Dahab, S.M., Abd-Alla, A.M. and Khan, A. (2016), "Rotational effect on Rayleigh, Love and Stoneley waves in non-homogeneous fibre-reinforced anisotropic general viscoelastic media of higher order", Struct. Eng. Mech., 58, 181-197. https://doi.org/10.12989/sem.2016.58.1.181
  7. Ahmed, S.M. and Abd-Alla, A.M. (2002), "Electromechanical wave propagation in a cylindrical poroelastic bone with cavity", Appl. Math. Mech., 133, 257-286.
  8. Akbarov, S.D., Ismailov, M.I., Marin, M., Abd-Alla, A.M. and Raducanu, D. (2015), "Dynamics of the moving load acting on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid and rigid wall", CMC: Comput. Mater. Continua, 45(2), 75-105.
  9. Bakora, A. and Tounsi, A. (2015), "Thermo-mechanical postbuckling behavior off thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085
  10. Belabed, Z., Houarib, M.A., Tounsi A., Mahmoud, S.R. and Anwar, B.O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  11. Biot, M.A. (1955), "Theory of elasticity and consolidation for a porous anisotropic solid", J. Appl. Phys., 26(2), 182-185. https://doi.org/10.1063/1.1721956
  12. Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid. I: low-frequency range", Acoust. Soc. Am., 28, 168-178. https://doi.org/10.1121/1.1908239
  13. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  14. Brynk, T., Hellmich, C., Fritsch, A., Zysset, P. and Eberhardsteiner, J. (2011), "Experimental poromechanics of trabecular bone strength: Role of Terzaghi's effective stress and of tissue level stress fluctuations", J. Biomech., 44(3), 501-508. https://doi.org/10.1016/j.jbiomech.2010.09.016
  15. Cardoso, L. and Cowin, S.C. (2012), "Role of structural anisotropy of biological tissues in poroelastic wave propagation", Mech. Mater., 44, 174-188. https://doi.org/10.1016/j.mechmat.2011.08.007
  16. Cowin, S.C. (1999), "Bone poroelasticity", J. Biomech., 32, 217-238. https://doi.org/10.1016/S0021-9290(98)00161-4
  17. Cui, L., Cheng, A.H.D. and Abousleiman, Y. (1997), "Poroelastic solutions of an inclined borehole", Tran. ASME, J. Appl. Mech., 64, 32-38. https://doi.org/10.1115/1.2787291
  18. Davis Sr, C.F. (1970), "On the mechanical properties and a poroelastic theory of stress in bone", Ph.D. Thesis, University of Delaware.
  19. Ding, H. and Chenbuo, L. (1996), "General solution for coupled equations for piezoelectric Media", Int. J. Solid. Struct., 16, 2283-2298.
  20. El-Naggar, A.M., Abd-Alla, A.M. and Mahmoud, S.R. (2001), "Analytical solution of electro-mechanical wave propagation in long bones", Appl. Math. Comput., 119, 77-98.
  21. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49, 795- 810. https://doi.org/10.1007/s11012-013-9827-3
  22. Fl, Y.K., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135-150.
  23. Ghista, D.N. (1979), Applied Physiological Mechanics, Ellis Harwood, Chichester.
  24. Ghista, D.N. (1979), Applied Physiologicnl Mechanics, Ellis Harwood, Chichester.
  25. Gilbert, R.P., Guyenne, P. and Ou, M.Y. (2012), "A quantitative ultrasound model of the bone with blood as the interstitial fluid", Math. Comput. Model., 55, 2029-2039. https://doi.org/10.1016/j.mcm.2011.12.004
  26. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
  27. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  28. Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57, 91-103. https://doi.org/10.12989/sem.2016.57.1.091
  29. Marin, M., Abd-Alla, A.M., Raducanu, D. and Abo-Dahab, S.M. (2015), "Structural continuous dependence in micropolar porous bodies", CMC: Comput. Mater. Continua, 45(2), 107-125.
  30. Mathieu, V. and Vayron, R. (2012), "Emmanuel soffer and fani anagnostou, influence of healing time on the ultrasonic response of the bone-implant interface", Ultras. Med. Biology, 38(4), 611-618. https://doi.org/10.1016/j.ultrasmedbio.2011.12.014
  31. Mathieu, V., Vayron, R., Richard, G., Lambert, G., Naili, S., Meningaud, J.P. and Haiat, G. (2014), "Biomechanical determinants of the stability of dental implants: Influence of the bone-implant interface properties", J. Biomech., 47(1), 3-13. https://doi.org/10.1016/j.jbiomech.2013.09.021
  32. Matuszyk, P.J. and Demkowicz, L.F. (2014), "Solution of coupled poroelastic/acoustic/elastic wave propagation problems using automatic hp-", Comput. Meth. Appl. Mech. Adapt. Eng., 281, 54-80. https://doi.org/10.1016/j.cma.2014.07.030
  33. Meziane, M.A.A., Henni, A.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  34. Misra, J.C. and Samanta, S.C. (1984), "Wave propagation in tubular bones", Int. J. Solid. Struct., 20(1), 55-62. https://doi.org/10.1016/0020-7683(84)90075-1
  35. Misra, J.C., Chatopadhyay, N.C. and Samanta, S.C. (1994), "Thermo-viscoelastic waves in an infinite aeolo-tropic body with a cylindrical cavity a study under the review of generalized theory of thermoelasticity", Compos. Struct., 52(4), 705-717. https://doi.org/10.1016/0045-7949(94)90351-4
  36. Morin, C. and Hellmich, C. (2014), "A multiscale poromicromechanical approach to wave propagation and attenuation in bone", Ultrasonics, 54, 1251-1269. https://doi.org/10.1016/j.ultras.2013.12.005
  37. Natal, A.N. and Meroi, E.A. (1986), "A review of the biomechanical properties of bone as a material", J. Biomed. Eng., 11, 266-277.
  38. Nguyen, V.H., Lemaire, T. and Naili, S. (2010), "Poroelastic behaviour of cortical bone under harmonic axial loading: A finite element study at the osteonal scale", Med. Eng. Phys., 32(4), 384-390. https://doi.org/10.1016/j.medengphy.2010.02.001
  39. Papathanasopoulou, V.A., Fotiadis, D.I., Foutsitzi, G. and Massalas, C.V. (2002), "A poroelastic bone model for internal remodeling", Int. J. Eng. Sci., 40(5), 511-530. https://doi.org/10.1016/S0020-7225(01)00076-3
  40. Parnell, W.J., Vu, M.B., Grimal, Q. and Naili, S. (2012), "Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone", Biomech. Model. Mechanobio., 11(6), 883-901. https://doi.org/10.1007/s10237-011-0359-2
  41. Potsika, V.T., Grivas, K.N., Protopappas, V.C., Vavva, M.G., Raum, K., Rohrbach, D., Polyzos, D. and Fotiadis, D.I. (2014), Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones", Ultrasonics, 54(5), 1219-1230. https://doi.org/10.1016/j.ultras.2013.09.002
  42. Qin, Q.H., Qu, C. and Ye, J. (2005), "Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads", Biomater., 26(3), 6798-6810. https://doi.org/10.1016/j.biomaterials.2005.03.042
  43. Said, S.M. and Othman, M.I.A. (2016), "Wave propation in a twotemperature fiber-reinforced magento-thermoelastic medium with tgree-phase-lag model", Struct. Eng. Mech., 57, 201-220. https://doi.org/10.12989/sem.2016.57.2.201
  44. Shah, S.A. (2008), "Axially symmetric vibrations of fluid-filled poroelastic circular cylindrical shells", Journal of Sound and Vibration, 318, 389-405. https://doi.org/10.1016/j.jsv.2008.04.012
  45. Shah, S.A. (2011), "Flexural wave propagation in coated poroelastic cylinders with reference to fretting fatigue", J. Vib. Control, 17, 1049-1064. https://doi.org/10.1177/1077546309360051
  46. Tounsi, A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  47. Wen, P.H. (2010), "Meshless local Petro-Galerkin (MLPG) method for wave propagation in 3D porolastic solids", Eng. Anal. Bound. Elem., 34, 315-323. https://doi.org/10.1016/j.enganabound.2009.10.013
  48. Zidi, M., Tounsi, A., Houari, M.S.A., Bedia, A., Anwar, E.A. and Beg, O. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. Biomechanical stability of internal bone-level implant: Dependency on hex or non-hex structure vol.74, pp.4, 2020, https://doi.org/10.12989/sem.2020.74.4.567