References
- Abd-Alla, A.M. and Abo-Dahab, S.M. (2013), "Effect of magnetic field on poroelastic bone model for internal remodeling", Appl. Math. Mech., 34, 889-906. https://doi.org/10.1007/s10483-013-1715-6
- Abd-Alla, A.M. and Yahya, G.A. (2013), "Wave propagation in a cylindrical human long wet bone", J. Comput. Theor. Nanosci., 10, 750-755. https://doi.org/10.1166/jctn.2013.2765
- Abd-Alla, A.M., Abo-Dahab, S.M. and Bayones, F.S. (2015), "Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field", Struct. Eng. Mech., 53, 277-296. https://doi.org/10.12989/sem.2015.53.2.277
- Abd-Alla, A.M., Abo-Dahab, S.M. and Mahmoud S.R. (2011), "Wave propagation modeling in cylindrical human long wet bones with cavity", Meccanica, 46, 1413-1428. https://doi.org/10.1007/s11012-010-9398-5
- Abo-Dahab, S.M., Abd-Alla, A.M. and Alqosami, S. (2014), "Effect of rotation on wave propagation in hollow poroelastic circular cylinder", Math. Probl. Eng., 2014, Article ID 879262, 16.
- Abo-Dahab, S.M., Abd-Alla, A.M. and Khan, A. (2016), "Rotational effect on Rayleigh, Love and Stoneley waves in non-homogeneous fibre-reinforced anisotropic general viscoelastic media of higher order", Struct. Eng. Mech., 58, 181-197. https://doi.org/10.12989/sem.2016.58.1.181
- Ahmed, S.M. and Abd-Alla, A.M. (2002), "Electromechanical wave propagation in a cylindrical poroelastic bone with cavity", Appl. Math. Mech., 133, 257-286.
- Akbarov, S.D., Ismailov, M.I., Marin, M., Abd-Alla, A.M. and Raducanu, D. (2015), "Dynamics of the moving load acting on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid and rigid wall", CMC: Comput. Mater. Continua, 45(2), 75-105.
- Bakora, A. and Tounsi, A. (2015), "Thermo-mechanical postbuckling behavior off thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085
- Belabed, Z., Houarib, M.A., Tounsi A., Mahmoud, S.R. and Anwar, B.O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Biot, M.A. (1955), "Theory of elasticity and consolidation for a porous anisotropic solid", J. Appl. Phys., 26(2), 182-185. https://doi.org/10.1063/1.1721956
- Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid. I: low-frequency range", Acoust. Soc. Am., 28, 168-178. https://doi.org/10.1121/1.1908239
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Brynk, T., Hellmich, C., Fritsch, A., Zysset, P. and Eberhardsteiner, J. (2011), "Experimental poromechanics of trabecular bone strength: Role of Terzaghi's effective stress and of tissue level stress fluctuations", J. Biomech., 44(3), 501-508. https://doi.org/10.1016/j.jbiomech.2010.09.016
- Cardoso, L. and Cowin, S.C. (2012), "Role of structural anisotropy of biological tissues in poroelastic wave propagation", Mech. Mater., 44, 174-188. https://doi.org/10.1016/j.mechmat.2011.08.007
- Cowin, S.C. (1999), "Bone poroelasticity", J. Biomech., 32, 217-238. https://doi.org/10.1016/S0021-9290(98)00161-4
- Cui, L., Cheng, A.H.D. and Abousleiman, Y. (1997), "Poroelastic solutions of an inclined borehole", Tran. ASME, J. Appl. Mech., 64, 32-38. https://doi.org/10.1115/1.2787291
- Davis Sr, C.F. (1970), "On the mechanical properties and a poroelastic theory of stress in bone", Ph.D. Thesis, University of Delaware.
- Ding, H. and Chenbuo, L. (1996), "General solution for coupled equations for piezoelectric Media", Int. J. Solid. Struct., 16, 2283-2298.
- El-Naggar, A.M., Abd-Alla, A.M. and Mahmoud, S.R. (2001), "Analytical solution of electro-mechanical wave propagation in long bones", Appl. Math. Comput., 119, 77-98.
- Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49, 795- 810. https://doi.org/10.1007/s11012-013-9827-3
- Fl, Y.K., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135-150.
- Ghista, D.N. (1979), Applied Physiological Mechanics, Ellis Harwood, Chichester.
- Ghista, D.N. (1979), Applied Physiologicnl Mechanics, Ellis Harwood, Chichester.
- Gilbert, R.P., Guyenne, P. and Ou, M.Y. (2012), "A quantitative ultrasound model of the bone with blood as the interstitial fluid", Math. Comput. Model., 55, 2029-2039. https://doi.org/10.1016/j.mcm.2011.12.004
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57, 91-103. https://doi.org/10.12989/sem.2016.57.1.091
- Marin, M., Abd-Alla, A.M., Raducanu, D. and Abo-Dahab, S.M. (2015), "Structural continuous dependence in micropolar porous bodies", CMC: Comput. Mater. Continua, 45(2), 107-125.
- Mathieu, V. and Vayron, R. (2012), "Emmanuel soffer and fani anagnostou, influence of healing time on the ultrasonic response of the bone-implant interface", Ultras. Med. Biology, 38(4), 611-618. https://doi.org/10.1016/j.ultrasmedbio.2011.12.014
- Mathieu, V., Vayron, R., Richard, G., Lambert, G., Naili, S., Meningaud, J.P. and Haiat, G. (2014), "Biomechanical determinants of the stability of dental implants: Influence of the bone-implant interface properties", J. Biomech., 47(1), 3-13. https://doi.org/10.1016/j.jbiomech.2013.09.021
- Matuszyk, P.J. and Demkowicz, L.F. (2014), "Solution of coupled poroelastic/acoustic/elastic wave propagation problems using automatic hp-", Comput. Meth. Appl. Mech. Adapt. Eng., 281, 54-80. https://doi.org/10.1016/j.cma.2014.07.030
- Meziane, M.A.A., Henni, A.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Misra, J.C. and Samanta, S.C. (1984), "Wave propagation in tubular bones", Int. J. Solid. Struct., 20(1), 55-62. https://doi.org/10.1016/0020-7683(84)90075-1
- Misra, J.C., Chatopadhyay, N.C. and Samanta, S.C. (1994), "Thermo-viscoelastic waves in an infinite aeolo-tropic body with a cylindrical cavity a study under the review of generalized theory of thermoelasticity", Compos. Struct., 52(4), 705-717. https://doi.org/10.1016/0045-7949(94)90351-4
- Morin, C. and Hellmich, C. (2014), "A multiscale poromicromechanical approach to wave propagation and attenuation in bone", Ultrasonics, 54, 1251-1269. https://doi.org/10.1016/j.ultras.2013.12.005
- Natal, A.N. and Meroi, E.A. (1986), "A review of the biomechanical properties of bone as a material", J. Biomed. Eng., 11, 266-277.
- Nguyen, V.H., Lemaire, T. and Naili, S. (2010), "Poroelastic behaviour of cortical bone under harmonic axial loading: A finite element study at the osteonal scale", Med. Eng. Phys., 32(4), 384-390. https://doi.org/10.1016/j.medengphy.2010.02.001
- Papathanasopoulou, V.A., Fotiadis, D.I., Foutsitzi, G. and Massalas, C.V. (2002), "A poroelastic bone model for internal remodeling", Int. J. Eng. Sci., 40(5), 511-530. https://doi.org/10.1016/S0020-7225(01)00076-3
- Parnell, W.J., Vu, M.B., Grimal, Q. and Naili, S. (2012), "Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone", Biomech. Model. Mechanobio., 11(6), 883-901. https://doi.org/10.1007/s10237-011-0359-2
- Potsika, V.T., Grivas, K.N., Protopappas, V.C., Vavva, M.G., Raum, K., Rohrbach, D., Polyzos, D. and Fotiadis, D.I. (2014), Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones", Ultrasonics, 54(5), 1219-1230. https://doi.org/10.1016/j.ultras.2013.09.002
- Qin, Q.H., Qu, C. and Ye, J. (2005), "Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads", Biomater., 26(3), 6798-6810. https://doi.org/10.1016/j.biomaterials.2005.03.042
- Said, S.M. and Othman, M.I.A. (2016), "Wave propation in a twotemperature fiber-reinforced magento-thermoelastic medium with tgree-phase-lag model", Struct. Eng. Mech., 57, 201-220. https://doi.org/10.12989/sem.2016.57.2.201
- Shah, S.A. (2008), "Axially symmetric vibrations of fluid-filled poroelastic circular cylindrical shells", Journal of Sound and Vibration, 318, 389-405. https://doi.org/10.1016/j.jsv.2008.04.012
- Shah, S.A. (2011), "Flexural wave propagation in coated poroelastic cylinders with reference to fretting fatigue", J. Vib. Control, 17, 1049-1064. https://doi.org/10.1177/1077546309360051
- Tounsi, A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Wen, P.H. (2010), "Meshless local Petro-Galerkin (MLPG) method for wave propagation in 3D porolastic solids", Eng. Anal. Bound. Elem., 34, 315-323. https://doi.org/10.1016/j.enganabound.2009.10.013
- Zidi, M., Tounsi, A., Houari, M.S.A., Bedia, A., Anwar, E.A. and Beg, O. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
Cited by
- Biomechanical stability of internal bone-level implant: Dependency on hex or non-hex structure vol.74, pp.4, 2020, https://doi.org/10.12989/sem.2020.74.4.567