DOI QR코드

DOI QR Code

Catalytic synthesis and properties of β-Ga2O3 nanowires by metal organic chemical vapor deposition

MOCVD를 이용한 금속 촉매 종류에 따른 β-Ga2O3 나노 와이어의 제작과 특성

  • Lee, Seunghyun (Department of Materials Engineering, Korea Maritime and Ocean University) ;
  • Lee, Seoyoung (Department of Materials Engineering, Korea Maritime and Ocean University) ;
  • Jeong, Yongho (Department of Material Science and Engineering, Dong-A University) ;
  • Lee, Hyojong (Department of Material Science and Engineering, Dong-A University) ;
  • Ahn, Hyungsoo (Department of Materials Engineering, Korea Maritime and Ocean University) ;
  • Yang, Min (Department of Materials Engineering, Korea Maritime and Ocean University)
  • 이승현 (한국해양대학교 전자소재공학과) ;
  • 이서영 (한국해양대학교 전자소재공학과) ;
  • 정용호 (동아대학교 신소재공학과) ;
  • 이효종 (동아대학교 신소재공학과) ;
  • 안형수 (한국해양대학교 전자소재공학과) ;
  • 양민 (한국해양대학교 전자소재공학과)
  • Received : 2016.10.31
  • Accepted : 2016.11.25
  • Published : 2017.02.28

Abstract

Catalytic synthesis and properties of ${\beta}-Ga_2O_3$ nanowires grown by metal organic chemical vapor deposition are reported. Au, Ni and Cu catalysts were suitable for the growth of $Ga_2O_3$ nanowires under our experimental conditions. The $Ga_2O_3$ nanowires grown by using Au, Ni and Cu catalysts showed different growth rates and morphologies in each case. We found the $Ga_2O_3$ nanowires were grown by the Vapor-Solid (VS) process when Ni was used as a catalyst while the Vapor-Liquid-Solid (VLS) was a dominant process in case of Au and Cu catalysts. Also, we found nanowires showed different optical properties depend on catalytic metals. On the other hand, for the cases of Ti, Sn and Ag catalysts, nanowires could not be obtained under the same condition of Au, Cu and Ni catalytic synthesis. We found that these results are related to the different characteristics of each catalyst, such as, melting points and phase diagrams with gallium metal.

Metal organic chemical vapor deposition(MOCVD) 방법을 이용하여 금속 촉매에 따른 ${\beta}-Ga_2O_3$ 나노 와이어의 제작과 특성에 대해 연구하였다. 본 연구의 성장 조건에서 ${\beta}-Ga_2O_3$ 나노 와이어의 성장이 가능한 금속 촉매는 Au, Cu 그리고 Ni이 있었으며 각 금속 촉매로 성장한 나노 와이어는 성장률과 형상에 많은 차이가 있었다. Ni 촉매 성장의 경우에는 Vapor-Solid(VS) 과정이 ${\beta}-Ga_2O_3$ 나노 와이어 성장의 주된 메커니즘이고 Au, Cu 촉매 성장의 경우에는 Vapor-Liquid-Solid(VLS) 과정이 주된 성장 메커니즘 임을 확인할 수 있었다. 또한, 촉매의 종류에 따라서 ${\beta}-Ga_2O_3$ 나노 와이어의 광학적 특성도 다르게 나타나는 것을 확인할 수 있었다. 반면, 동일한 성장 조건에서 Ti, Ag 그리고 Sn 금속은 나노 와이어 성장을 위한 촉매로 작용하지 못하였다. 본 연구에서는 금속 촉매에 따른 나노 와이어의 성장 가능 여부와 성장한 나노 와이어의 특성 변화가 금속 촉매의 녹는 점, 금속- Ga의 공융 점과 관련이 있음을 상태도와 연관 지어 밝혀내었다.

Keywords

References

  1. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui and S. Yamakoshi, "Gallium oxide ($Ga_2O_3$) metal-semiconductor field-effect transistors on single-crystal ${\beta}-Ga_2O_3$ (010) substrates", Appl. Phys. Lett. 100 (2012) 013504. https://doi.org/10.1063/1.3674287
  2. C. Jin, S. Park, H. Kim and C. Lee, "Ultrasensitive multiple networked $Ga_2O_3$-core/ZnO-shell nanorod gas sensors", Sens. Actuators A. 161 (2012) 223. https://doi.org/10.1016/j.snb.2011.10.023
  3. L. Li, W. Wei and M. Behrens, "Synthesis and characterization of ${\alpha}-,\;{\beta}-,\;and\;{\gamma}-Ga_2O_3$ prepared from aqueous solutions by controlled precipitation", Solid State Sciences 14 (2012) 971. https://doi.org/10.1016/j.solidstatesciences.2012.04.037
  4. T. Minami, T. Shirai, T. Nakatani and T. Miyata, "Electroluminescent devices with $Ga_2O_3$: Mn thin-film emitting layer prepared by sol-gel process", Jpn. J. Appl. Phys. 39 (2000) L 524. https://doi.org/10.1143/JJAP.39.L524
  5. M.H. Chun, I.Y. Park, J. Lee and S. Kim, "Preparation of $Ga_2O_3:\;Eu^{3+}$ phosphors by homogeneous precipitation", J. Korean Cryst. Growth and Cryst. Technol. 12 (2002) 149.
  6. E.W. Wong, P.E. Sheehan and C.M. Lieber, "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes", Science 277 (1997) 1971. https://doi.org/10.1126/science.277.5334.1971
  7. Z.W. Pan, Z.R. Dai and Z.L. Wang, "Nanobelts of semiconducting oxides", Science 291 (2001) 1947. https://doi.org/10.1126/science.1058120
  8. L. Dong, J. Jiao, D.W. Tuggle, J.M. Petty, S.A. Elliff and M. Coulter, "ZnO nanowires formed on tungsten substrates and their electron field emission properties", Appl. Phys. Lett. 82 (2003) 1096. https://doi.org/10.1063/1.1554477
  9. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, "Room-temperature ultraviolet nanowire nanolasers", Science 292 (2001) 1897. https://doi.org/10.1126/science.1060367
  10. Y. Cui, Q. Wei, H. Park and C.M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species", Science 293 (2001) 1289. https://doi.org/10.1126/science.1062711
  11. H.-J. Choi, "Semiconductor nanostructures for optoelectronic devices", Gyu-Chul Yi (Springer Berlin Heidelberg, Berlin Heidelberg, 2012) p. 2.
  12. K.W. Kolasinski, "Catalytic growth of nanowires: Vapor-liquid-solid, vapor-solid-solid, solution-liquidsolid and solid-liquid-solid growth", Curr. Opin. Solid State Mater. Sci. 10 (2006) 182. https://doi.org/10.1016/j.cossms.2007.03.002
  13. C.J. Cooke and W. Hume-Rothery, "The equilibrium diagram of the system gold-gallium", J. Less-Common Met. 10 (1966) 42. https://doi.org/10.1016/0022-5088(66)90044-0
  14. R. Stokhuyzen, J.K. Brandon, P.C. Chieh and W.B. Pearson, "Copper-gallium, ${\gamma}_{1}Cu_{9}Ga_{4}$", Acta Cryst. B30 (1974) 2910.
  15. D. Swenson and Y.L. Chang, "Phase equilibria in the Ga-In-Ni system at $600^{\circ}C$", J. Phase Equilib. 16 (1995) 508. https://doi.org/10.1007/BF02646720
  16. M. Kumar, "Carbon nanotubes - synthesis, characterization, applications", Siva Yellampalli (InTech, Croatia Rijeka, 2011) p. 156.
  17. J.L. Murray, "The Ga-Ti (gallium-titanium) system", Bull. Alloy Phase Diagrams 6 (1985) 327. https://doi.org/10.1007/BF02880510
  18. S.K. Halder and S.P. Sen Gupta, "An X-ray determination of the thermal expansion of ${\alpha}$-phase Ag-Ga alloys at high temperatures", Acta Cryst. A30 (1974) 844.
  19. B. Predel, "Zustandsdiagramm und eigenschaften von Gallium-Zinn-Legierungen", J. Less-Common Met. 7 (1964) 347. https://doi.org/10.1016/0022-5088(64)90079-7
  20. G.S. Park, W.B. Choi, J.M. Kim, Y.C. Choi, Y.H. Lee and C.B. Lim, "Structural investigation of gallium oxide (${\beta}-Ga_2O_3$) nanowires grown by arc-discharge", J. Cryst. Growth 220 (2000) 494. https://doi.org/10.1016/S0022-0248(00)00609-6
  21. J.Y. Li, Z.Y. Qiao, X.L. Chen, L. Chen, Y.G. Cao, M. He, H. Li, Z.M. Cao and Z. Zhang, "Synthesis of ${\beta}-Ga_2O_3$ nanorods", J. Alloys Comp. 306 (2000) 300. https://doi.org/10.1016/S0925-8388(00)00807-0
  22. Y.C. Choi, W.S. Kim, Y.S. Park, S.M. Lee, D.J. Bae, Y.H. Lee, G.S. Park, W.B. Choi, N.S. Lee and J.M. Kim, "Catalytic growth of ${\beta}-Ga_2O_3$ nanowires by Arc discharge", Adv. Mater. 12 (2000) 746. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<746::AID-ADMA746>3.0.CO;2-N
  23. Y.H. Gao, Y. Bando, T. Sato, Y.F. Zhang and X.Q. Gao, "Synthesis, raman scattering and defects of ${\beta}-Ga_2O_3$ nanorods", Appl. Phys. Lett. 81 (2002) 2267. https://doi.org/10.1063/1.1507835
  24. D. Dohy, G. Lucazeau and A. Revcolevschi, "Raman spectra and valence force field of single-crystalline ${\beta}-Ga_2O_3$", J. Solid State Chem. 45 (1982) 180. https://doi.org/10.1016/0022-4596(82)90274-2
  25. R. Rao, A.M. Rao, B. Xu, J. Dong, S. Sharma and M.K. Sunkara, "Blueshifted raman scattering and its correlation with the [110] growth direction in gallium oxide nanowires", J. Appl. Phys. 98 (2005) 094312. https://doi.org/10.1063/1.2128044
  26. L. Binet and D. Gourier, "Origin of the blue luminescence of ${\beta}-Ga_2O_3$", J. Phys. Chem. Solids 59 (1998) 1241. https://doi.org/10.1016/S0022-3697(98)00047-X
  27. G. Guzman-Navarro, M. Herrera-Zaldivar, J. Valenzuela-Benavides and D. Maestre, "CL study of blue and UV emissions in ${\beta}-Ga_2O_3$ nanowires grown by thermal evaporation of GaN", J. Appl. Phys. 110 (2011) 034315. https://doi.org/10.1063/1.3620986
  28. K. Shimamura, E.G. Villora, T. Ujiie and K. Aoki, "Excitation and photoluminescence of pure and Sidoped ${\beta}-Ga_2O_3$ single crystals", Appl. Phys. Lett. 92 (2008) 201914. https://doi.org/10.1063/1.2910768
  29. T. Harwig, F. Kellendonk and S. Slappendel, "The ultraviolet luminescence of ${\beta}$-galliumsesquioxide", J. Phys. Chem. Solids 39 (1978) 675. https://doi.org/10.1016/0022-3697(78)90183-X
  30. Y.P. Song, H.Z. Zhang, C. Lin, Y.W. Zhu, G.H. Li, F.H. Yang and D.P. Yu, "Luminescence emission originating from nitrogen doping of ${\beta}-Ga_2O_3$ nanowires", Phys. Rev. B 69 (2004) 075304. https://doi.org/10.1103/PhysRevB.69.075304
  31. E. Nogales, B. Mendez and J. Piqueras, "Cathodoluminescence from ${\beta}-Ga_2O_3$ nanowires", Appl. Phys. Lett. 86 (2005) 113112. https://doi.org/10.1063/1.1883713
  32. E. Nogales, B. Sanchez, B. Mendez and J. Piqueras, "Cathodoluminescence study of isoelectronic doping of gallium oxide nanowires", Superlattice Microstruct. 45 (2009) 156. https://doi.org/10.1016/j.spmi.2008.11.027
  33. W. Mi, C. Luan, Z. Li, C. Zhao, X. Feng and J. Ma, "Ultraviolet-green photoluminescence of ${\beta}-Ga_2O_3$ films deposited on $MgAl_{6}O_{10}$ (100) substrate", Opt. Mater. 35 (2013) 2624. https://doi.org/10.1016/j.optmat.2013.07.030
  34. E. Nogales, B. Mendez and J. Piqueras, "Assessment of waveguiding properties of gallium oxide nanostructures by angle resolved cathodoluminescence in a scanning electron microscope", Ultramicroscopy 111 (2011) 1037. https://doi.org/10.1016/j.ultramic.2011.03.003