DOI QR코드

DOI QR Code

Insect Resistance of Tobacco Plant Expressing CpBV-ELP1 Derived from a Polydnavirus

폴리드나바이러스 유래 CpBV-ELP1 발현 담배의 내충성

  • Kim, Eunseong (Department of Bio-Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Bio-Sciences, Andong National University)
  • 김은성 (안동대학교 생명자원과학과) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Received : 2016.10.07
  • Accepted : 2016.12.12
  • Published : 2017.03.01

Abstract

Polydnaviruses (PDVs) are a group of double-stranded DNA viruses symbiotic to some endoparasitoid wasps. Cotesia plutellae bracovirus (CpBV) is a PDV symbiotic to an endoparasitoid wasp, C. plutellae, parasitizing young larvae of Plutella xylostella. An early expressed gene, CpBV-ELP1, plays an important role in the parasitism by suppressing host cellular immunity by its cytotoxic activity against hemocytes. This study aimed to test its oral toxicity against insect pest by expressing it in a recombinant tobacco plant. A recombinant CpBV-ELP1 protein was produced using a baculovirus expression system and secreted to cell culture medium. The cell cultured media were used to purify CpBV-ELP1 by a sequential array of purification steps: ammonium sulfate fractionation, size exclusion chromatography, and ion exchange chromatography. Purified rCpBV-ELP1 exhibited a significant cytotoxicity against Spodoptera exigua hemocytes. CpBV-ELP1 was highly toxic to the fifth instar larvae of S. exigua by injection to hemocoel. It also showed a significant oral toxicity to fifth instar larvae of S. exigua by a leaf-dipping assay. CpBV-ELP1 was cloned into pBI121 vector under CaMV 35S promoter with opaline synthase terminator. Resulting recombinant vector (pBI121-ELP1) was used to transform Agrobacterium tumefaciens LBA4404. The recombinant bacteria were then used to induce callus of a tobacco (Nicotiana tabacum Xanthi) leaves and subsequent generation (T1) plants were selected. T1 generation tobacco plants expressing CpBV-ELP1 gave significant insecticidal activities against S. exigua larvae. These results suggest that CpBV-ELP1 gene can be used to control insect pests by constructing transgenic crops.

폴리드나바이러스(polydnavirus: PDV)는 일부 내부기생봉에 공생하는 이중나선형 DNA 바이러스 분류군이다. Cotesia plutellae bracovirus (CpBV)는 프루텔고치벌(C. plutellae)에 공생하는 일종의 PDV이다. 프루텔고치벌은 어린 배추좀나방(Plutella xylostella) 유충에 기생한다. 기생 초기에 발현하는 CpBV-ELP1 유전자는 혈구세포에 세포독성을 발휘하면서 기주의 세포성 면역을 억제하여 기생에 중요한 역할을 담당하고 있다. 본 연구는 이 유전자를 담배 식물에서 발현하여 해충에 대한 경구독성을 분석하는 데 목적을 두었다. 재조합 CpBV-ELP1 단백질이 배큘로바이러스 발현시스템을 통해 합성되어 세포배양액에 분비되었다. 수거된 세포배양액은 일련의 단백질 분리과정(ammonium sulfate 단백질 분획, size exclusion 크로마토그래피, 이온교환 크로마토그래피)을 통해 CpBV-ELP1 단백질을 분리하는 데 이용되었다. 분리된 rCpBV-ELP1 단백질은 파밤나방(Spodoptera exigua) 혈구에 대한 뚜렷한 세포독성을 보였다. CpBV-ELP1은 파밤나방 5령충에 대해서 혈강 주입하여 살충력을 나타냈고, 엽침지법을 이용하여 경구독성을 갖고 있는 것을 확인하였다. CpBV-ELP1 유전자를 CaMV 35S 유전자 프로모터와 opaline synthase 유전자 전사종결신호를 갖는 pBI121 벡터에 클로닝하여 Agrobacterium tumefaciens LBA4404 세균에 형질전환을 유도하였다. 형질전환된 세균은 담배(Nicotiana tabacum Xanthi)잎에 감염하여 캘러스를 유도하게 하였고 이후 차세대(T1)를 확보하였다. T1 세대 담배는 파밤나방에 대한 해충저항성을 갖고 있음을 확인하였다. 이러한 결과는 CpBV-ELP1 유전자가 형질전환작물을 통해 해충방제에 응용될 수 있다는 것을 제시하고 있다.

Keywords

References

  1. Ali, R., Kim, Y., 2012. A novel polydnaviral gene family, BEN, and its immunosuppressive function in larvae of Plutella xylostella parasitized by Cotesia plutellae. J. Invertebr. Pathol. 110, 389-397. https://doi.org/10.1016/j.jip.2012.05.003
  2. Bae, S., Kim, Y., 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. A 138, 39-44. https://doi.org/10.1016/j.cbpb.2004.02.018
  3. Basio, N.A.M., Kim, Y., 2006. Additive effect of teratocyte and calyx fluid from Cotesia plutellae on immunosuppression of Plutella xylostella. Physiol. Entomol. 31, 341-347. https://doi.org/10.1111/j.1365-3032.2006.00524.x
  4. Bezier, A., Annaheim, M., Herbiniere, J., Wetterwald, C., Gyapay, G., Bernard-Samain, S., Wincker, P., Roditi, I., Heller, M., Belghazi, M., Pfister-Wilhem, R., Periquet, G., Dupuy, C., Huguet, E., Volkoff, A.N., Lanzrein, B., Drezen, J.M., 2009. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323, 926-930. https://doi.org/10.1126/science.1166788
  5. Bezier, A., Louis, F., Jancek, S., Periquet, G., Theze, J., Gyapay, G., Musset, K., Lesobre, J., Lenoble, P., Dupuy, C., Gundersen- Rindal, D., Herniou, E.A., Drezen, J.M., 2013. Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20130047. https://doi.org/10.1098/rstb.2013.0047
  6. Bradford, M.M., 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Chen, Y.F., Gao, F., Ye, X.Q., Wei, S.J., Shi, M., Zheng, H.J., Chen, X.X., 2011. Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 414, 42-50. https://doi.org/10.1016/j.virol.2011.03.009
  8. Choi, J.Y., Roh, J.Y., Kang, J.N., Shim, H.J., Woo, S.D., Jin, B.R., Li, M.S., Je, Y.H., 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332, 487-493. https://doi.org/10.1016/j.bbrc.2005.04.146
  9. Di Lelio, I., Caccia, S., Coppola, M., Buonanno, M., Di Prisco, G., Varricchio, P., Franzetti, E., Corrado, G., Monti, S.M., Rao, R., Casartelli, M., Pennacchio, F., 2014. A virulence factor encoded by a polydnavirus confers tolerance to transgenic tobacco plants against lepidopteran larvae, by impairing nutrient absorption. PLoS ONE 9, e113988. https://doi.org/10.1371/journal.pone.0113988
  10. Gad, W., Kim, Y., 2008. A viral histone H4 encoded in Cotesia plutellae bracovirus inhibits hemocyte spreading behavior of the diamondback moth, Plutella xylostella. J. Gen. Virol. 89, 931-938. https://doi.org/10.1099/vir.0.83585-0
  11. Gad, W., Kim, Y., 2009. N-terminal tail of a viral histone H4 encoded in Cotesia plutellae bracovirus is essential to suppress gene expression of host histone H4. Insect Mol. Biol. 18, 111-118. https://doi.org/10.1111/j.1365-2583.2009.00860.x
  12. Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on an artificial diet. Korean J. Appl. Entomol. 29, 180-183.
  13. Harwood, S.H., Grosovsky, A.J., Cowles, E.A., Davis, J.W., Beckage, N.E., 1994. An abundantly expressed hemolymph glycoprotein isolated from newly parasitized Manduca sexta larvae is a polydnavirus gene product. Virology 205, 381-392. https://doi.org/10.1006/viro.1994.1659
  14. Hepat, R., Song, J., Lee, D., Kim, Y., 2013. A viral histone H4 joins to eukaryotic nucleosomes and alters host gene expression. J. Virol. 87, 11223-11230. https://doi.org/10.1128/JVI.01759-13
  15. Herniou, E.A., Huguet, E., Theze, J., Bezier, A., Periquet, G., Drezen, J.M., 2013. When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20130051. https://doi.org/10.1098/rstb.2013.0051
  16. Ibrahim, A.M., Kim, Y., 2006. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. J. Insect Physiol. 52, 943-950. https://doi.org/10.1016/j.jinsphys.2006.06.001
  17. Ibrahim AM, Kim Y. 2008. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses. Naturwissenschaften 95, 25-32.
  18. Jung, S., Kwoen, M., Choi, J.Y., Je, Y.H., Kim, Y., 2006. Parasitism of Cotesia spp. enhances susceptibility of Plutella xylostella to other pathogens. J. Asia Pac. Entomol. 9, 255-263. https://doi.org/10.1016/S1226-8615(08)60300-3
  19. Kim, E., Kim, Y., 2016. Translational control of host gene expression by a Cys-motif protein encoded in a bracovirus. PLoS ONE 11, e0161661. https://doi.org/10.1371/journal.pone.0161661
  20. Kim, E., Kim, Y., Yeam, I., Kim, Y., 2016. Transgenic expression of a viral cystatin gene CpBV-CST1 in tobacco confers insect resistance. Environ. Entomol. 45, 1322-1331. https://doi.org/10.1093/ee/nvw105
  21. Kim, Y. 2006. Polydnavirus and its novel application to insect pest control. Korean J. Appl. Entomol. 45, 241-259.
  22. Kim, Y., Bae, S., Lee, S., 2004. Polydnavirus replication and ovipositional habit of Cotesia plutellae. Korean J. Appl. Entomol. 43, 225-231.
  23. Kim, Y., Ryu, S., 2007. Ultrastructure of Cotesia plutellae bracovirus in its replication at wasp ovarian calyx. J. Asia Pac. Entomol. 10, 357-361. https://doi.org/10.1016/S1226-8615(08)60376-3
  24. Kumar, S., Gu, X., Kim, Y., 2016a. A viral histone H4 suppresses insect insulin signal and delays host development. Dev. Comp. Immunol. 63, 66-77. https://doi.org/10.1016/j.dci.2016.05.012
  25. Kumar, S., Venkata, P., Kim, Y., 2016b. Suppressive activity of a viral histone H4 against two host chromatin remodeling factors: lysine demethylase and SWI/SNF. J. Gen. Virol., In press.
  26. Kwon, B., Kim, Y., 2008. Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 32, 932-942. https://doi.org/10.1016/j.dci.2008.01.005
  27. Kwon, B., Song, S., Choi, J.Y., Je, Y.H., Kim, Y., 2010. Transient expression of specific Cotesia plutellae bracoviral segments induces prolonged larval development of the diamondback moth, Plutella xylostella. J. Insect Physiol. 56, 650-658. https://doi.org/10.1016/j.jinsphys.2010.01.013
  28. Lee, S., Kim, Y., 2008. Two homologous parasitism-specific proteins encoded in Cotesia plutellae bracovirus and their expression profiles in parasitized Plutella xylostella. Arch. Insect Biochem. Physiol. 67, 157-171. https://doi.org/10.1002/arch.20218
  29. Maiti, I.B., Dey, N., Pattanaik, S., Dahlman, D.L., Rana, R.L., Webb, B.A., 2003. Antibiosis-type insect resistance in transgenic plants expressing a teratocyte secretory protein (TSP14) gene from a hymenopteran endoparasite (Microplitis croceipes). Plant Biotechnol. J. 1, 209-219. https://doi.org/10.1046/j.1467-7652.2003.00019.x
  30. Park, J., Kim, Y., 2012. Change in hemocyte populations of the beet armyworm, Spodoptera exigua, in response to bacterial infection and eicosanoid mediation. Korean J. Appl. Entomol. 61, 349-356.
  31. Prasad, S.V., Hepat, R., Kim, Y., 2014. Selectivity of a translation-inhibitory factor, $CpBV15{\beta}$, in host mRNAs and subsequent alterations in host development and immunity. Dev. Comp. Immunol. 44, 152-162. https://doi.org/10.1016/j.dci.2013.12.001
  32. Pruijssers, A.J., Strand, M.R., 2007. PTP-H2 and PTP-H3 from Microplitis demolitor bracovirus localize to focal adhesions and are antiphagocytic in insect immune cells. J. Virol., 81, 1209-1219. https://doi.org/10.1128/JVI.02189-06
  33. Sambrook, J., Fritsh, E.F., Maniatis, T., 1989. Molecular cloning. A laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, NY.
  34. Stoltz, D.B., 1990. Evidence for chromosomal transmission of polydnavirus genomes. Can. J. Microbiol. 36, 538-543. https://doi.org/10.1139/m90-094
  35. Strand, M.R., Burke, G.R., 2013. Polydnavirus-wasp associations: evolution, genome organization, and function. Curr. Opin. Virol. 3, 587-594. https://doi.org/10.1016/j.coviro.2013.06.004
  36. Strand, M.R., Burke, G.R., 2015. Polydnaviruses: from discovery to current insights. Virology 479-480, 393-402 https://doi.org/10.1016/j.virol.2015.01.018
  37. Surakasi, V.P., Nalini, M., Kim, Y., 2011. Host translational control of a polydnavirus, Cotesia plutellae bracovirus, by sequestering host eIF4A to prevent formation of a translation initiation complex. Insect Mol. Biol. 20, 609-618. https://doi.org/10.1111/j.1365-2583.2011.01091.x
  38. Volkoff, A.N., Jouan, V., Urbach, S., Samain, S., Bergoin, M., Wincker, P., Demettre, E., Cousserans, F., Provost, B., Coulibaly, F., Legeai, F., Beliveau, C., Cusson, M., Gyapay, G., Drezen, J.M., 2010. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog. 6, e1000923. https://doi.org/10.1371/journal.ppat.1000923
  39. Webb, B.A., Beckage, N.E., Hayakawa, Y., Krell, P.J., Lanzrein, B., Stoltz, D.B., Strand, M.R., Summers, M.D., 2000. Family polydnaviridae. in: van Regenmortel, M.H.V., Faquet, C.M., Bishop, D.H.L., Carstens, E.B., Estes, M.K., Lennon, S.M., Maniloff, J.M., Mayo, A., McGeoch, D.J., Pringle, C.R., Wickner, R.B. (Eds.), Virus taxonomy. Academic Press, New York. pp. 253-260.
  40. Webb, B.A., Strand, M.R., Dickey, S.E., Beck, M.H., Hilgarth, R.S., Kadash, K., Kroemer, J.A., Lindstorm, K.G., Rattanadechakul, W., Shelby, K.S., Thoetkiattikul, H., Turnbull, M.W., Witherell, R.A., Barney, W.E., 2006. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347, 160-174. https://doi.org/10.1016/j.virol.2005.11.010
  41. Wyler, T., Lanzrein, B., 2003. Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. II. Ultrastructural analysis of calyx cell development, virion formation and release. J. Gen. Virol. 84, 1151-1163. https://doi.org/10.1099/vir.0.18830-0