DOI QR코드

DOI QR Code

A Review for Non-linear Models Describing Temperature-dependent Development of Insect Populations: Characteristics and Developmental Process of Models

비선형 곤충 온도발육모형의 특성과 발전과정에 대한 고찰

  • Kim, Dong-Soon (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University) ;
  • Ahn, Jeong Joon (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Joon-Ho (Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 김동순 (제주대학교 생명자원과학대학 식물환경전공, SARI, 제주대학교 아열대농업생명과학연구소) ;
  • 안정준 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 이준호 (서울대학교 농업생명과학대학 농생명공학부)
  • Received : 2016.10.04
  • Accepted : 2016.11.10
  • Published : 2017.03.01

Abstract

Temperature-dependent development model is an essential component for forecasting models of insect pests as well as for insect population models. This study reviewed the nonlinear models which explain the relationship between temperature and development rate of insects. In the present study, the types of models were classified largely into empirical and biophysical model, and the groups were subdivided into subgroups according to the similarity of mathematical equations or the connection with original idea. Empirical models that apply analytical functions describing the suitable shape of development curve were subdivided into multiple subgroups as Stinner-based types, Logan-based types, performance models and Beta distribution types. Biophysical models based on enzyme kinetic reaction were grouped as monophyletic group leading to Eyring-model, SM-model, SS-mode, and SSI-model. Finally, we described the historical development and characteristics of non-linear development models and discussed the availability of models.

곤충의 온도발육모형은 해충의 발생예찰모형을 비롯한 개체군모형에서 기본이 되는 요소이다. 본고에서는 곤충의 온도의존적 비선형 발육모형에 대하여 고찰하였다. 모형의 종류를 크게 경험모형과 생물리적 모형으로 구분하였으며, 수식의 유사성 내지 기원에 대한 유연관계에 따라 세분하였다. 발육률 곡선의 형태적 묘사에 적합한 수식을 적용하는 경험모형은 Stinner-계열, Logan-계열, 수행모형, 그리고 베타 분포모형으로 세분화하여 고찰하였다. 촉매반응을 바탕으로 하고 있는 생물리적 모형은 Eyring-모형, SM-모형, SS-모형, SSI-모형으로 이어지는 단계통으로 분류하였다. 본 연구에 포함된 각 모형의 개발과정과 형태적합 특성에 대하여 기술하였다.

Keywords

References

  1. Ahn, J.J., Son, Y., He, Y., Lee, E., Park, Y-L., 2016. Effects of temperature on development and voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for climate change impacts. PLOS One 11, e0161319. https://doi.org/10.1371/journal.pone.0161319
  2. Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Autom. Con. 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705
  3. Amarasekare, P., Savage, V., 2012. A framework for elucidating the temperature dependence of fitness. Am. Nat. 179, 178-191. https://doi.org/10.1086/663677
  4. Arrhenius, S., 1889. Uber die Reactionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren. Zeitschrift fur Physikalische Chemie 4, 226-92.
  5. Bock, R.K., Krischer, W., 1998. The data analysis brief book. Berlin/Heidelberg: Springer-Verlag.
  6. Briere, J.F., Pracros, P., Le Roux, L.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
  7. Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: A practical information theoretic approach. Springer, New York. 488pp.
  8. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  9. Campolo, O., Malcrino, A., Laudani, F., Maione, V., Zappala, L., Palmeri, V., 2014. Population dynamics and temperaturedependent development of Chrysomphalus aonidum (L.) to aid sustainable pest management decisions. Neotrop. Entomol. 43, 453-464. https://doi.org/10.1007/s13744-014-0226-9
  10. Cho, Y.-Y., Oh, M.-M., Son, J.-E., 2009. Modeling approaches for estimating cardinal temperatures by bilinear, parabolic, and Beta distribution functions. Korean J. Hortic. Sci. Technol. 27, 239-243.
  11. Crozier, W.J., 1926. On curves of growth, especially in relation to temperature. J. Gen. Physiol. 10, 53-73. https://doi.org/10.1085/jgp.10.1.53
  12. Curry, G.L., Feldman, R.M., 1987. Mathematical foundations of population dynamics. Mono. Ser. 3. Tex. Eng. Exp. Stn., College Station, TX. 246pp.
  13. Damos, P., Savopoulou-Soultani, M., 2012. Temperature-driven models for insect development and vital thermal requirements. Psyche 2012, 1-13
  14. Damos, P.T., Savopoulou-Soultani, M., 2008. Temperature dependent bionomics and modeling of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory. J. Econ. Entomol. 101, 1557-1567. https://doi.org/10.1093/jee/101.5.1557
  15. Dixon, A.F.G., Honek, A., Keil, P., Kotela, M.A.A., Sizling, A.L., Jarosik, V., 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23, 257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
  16. Drost, Y.C., van Lenteren, J.C., van Roermund, H.J.W., 1998. Lift-history parameters of different biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to temperature and host plant: a selective review. B. Entomol. Res. 88, 219-229. https://doi.org/10.1017/S0007485300025840
  17. Eubank, W.P., Atmar, J.W., Ellington, J.J., 1973. The significance and thermodynamics of fluctuating versus static thermal environment on Heliothis zea egg development rates. Environ. Entomol. 2, 491-496. https://doi.org/10.1093/ee/2.4.491
  18. Evans, M.G., Polanyi, M., 1935. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875-894. https://doi.org/10.1039/tf9353100875
  19. Eyring, H. 1935. The activated complex in chemical reactions. J. Chem. Phys. 3: 107-115. https://doi.org/10.1063/1.1749604
  20. Fand, B.B., Sul, N.T., Bal, S.K., Minhas, P.S., 2015. Temperature impacts the development and survival of common cutworm (Spodoptera litura): Simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLOS One e0124682.
  21. Got, B., Piry, S., Migeon, A., Labatte, M.J., 1997. Comparison of different models for predicting development time of the european corn borer (Lepidoptera: Pyralidae). Environ. Entomol. 26, 46-60. https://doi.org/10.1093/ee/26.1.46
  22. Higley, L.G., Pedigo, L.P., Ostle, K.R., 1986. DEGDAY: a program for calculating degree-days, and assumptions behind the degree-day approach. Environ. Entomol. 15, 999-1016. https://doi.org/10.1093/ee/15.5.999
  23. Hilbert, D.W., Logan, J.A., 1983. Empirical model of nymphal development for migratory grasshopper, Meldnoplus sanguinipes (Orthoptera: Acrididae). Environ. Entomol. 12, 1-5. https://doi.org/10.1093/ee/12.1.1
  24. Holling, C.S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 45, 5-60.
  25. Honek, A., 1999. Constraints on thermal requirements for insect development. Entomol. Sci. 2, 615-621.
  26. Huey, R.B., Kingsolver, J.G., 1989. Evolution of thermal sensitivity of ectotherm performance. TREE 4, 131-135.
  27. Huey, R.B., Stevenson, R.D., 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Amer. Zool. 19, 357-366. https://doi.org/10.1093/icb/19.1.357
  28. Hultin, E., 1955. The influence of Temperature on the rate of enzyme processes. Acta Chem. Scand. 9, 1700-1710. https://doi.org/10.3891/acta.chem.scand.09-1700
  29. Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34, 1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
  30. Ikemoto, T., 2003. Possible existence of a common temperature and a common duration of development among members of a taxonomic group of arthropods that underwent speciational adaptation to temperature. Appl. Entomol. Zool. 38, 487-492. https://doi.org/10.1303/aez.2003.487
  31. Ikemoto, T., Kurahashi, I, Shi, P-J., 2013. Confidence interval of intrinsic optimum temperature estimated using the thermodynamic SSI model. Insect Science 20, 420-428. https://doi.org/10.1111/j.1744-7917.2012.01525.x
  32. Janisch, E., 1925. Uber die temperaturabhangigbeit biologischer vorgange und ihre kurvenmassige analyse. Arch. Ges. Physiolo. 209, 414-436. https://doi.org/10.1007/BF01730929
  33. Johnson, F.H., Lewin, I., 1946. The growth rate of E. coli in relation to temperature, quinine and coenzyme. J. Cell. Comp. Physiol. 28, 47-75. https://doi.org/10.1002/jcp.1030280104
  34. Kim, D.-S., Lee, J.-H., Yiem, M.-S., 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models. Environ. Entomol. 30, 298-305 https://doi.org/10.1603/0046-225X-30.2.298
  35. Kontodimas, D.C., Eliopoulos, P.A., Stathas, G.J., Economou, L.P., 2004. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluating of a linear and various nonlinear models using specific criteria. Environ. Entomol. 33, 1-11. https://doi.org/10.1603/0046-225X-33.1.1
  36. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  37. Lin, C.C., Segel, L.A., 1974. Mathematics applied to deterministic problems in the natural sciences. Macmillan Publishing Co., Inc., New York. 604 pp.
  38. Liu, S.S., Meng, X.D., 2000. Modelling development time of Lipaphis erysimi (Hemiptera: Aphididae) at constant and variable temperatures. Bull. Entomol. Res. 90, 337-347.
  39. Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  40. Pradhan, S., 1946. Insect population studies. IV. Dynamics of temperature effect on insect development. Proc. Nat. Inst. Sci. India 12, 385-404.
  41. Pruess, K.P., 1983. Day-degree methods for pest management. Environ. Entomol. 12, 613-619. https://doi.org/10.1093/ee/12.3.613
  42. Regniere, J., Powell, J., Bentz, B., Nealis, V., 2012. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J. Insect Physiol. 58, 634-647. https://doi.org/10.1016/j.jinsphys.2012.01.010
  43. Robertson, T.B., 1923. The chemical basis of growth and senescence. Lippincott, Phildelphia. 389pp.
  44. Roy, M., Brodeur, J., Cloutier, C., 2002. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ. Entomol. 31, 177-187. https://doi.org/10.1603/0046-225X-31.1.177
  45. Ryoo, M.I., Cho, K.J., 1988. A model for the temperature-dependent developmental rate of S. oryzae L. (Coleoptera: Curculionidae) on rice. J. Stored Prod. Res. 24, 79-82. https://doi.org/10.1016/0022-474X(88)90034-3
  46. SAS Institute, 1999. SAS System for Window, Release 8.02. SAS Institute, Cary, NC.
  47. Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nolinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theo. Biol. 88, 715-731.
  48. Schwartz, G., 1978,. Estimating dimensions of a model. Ann. Stat. 6, 461-464. https://doi.org/10.1214/aos/1176344136
  49. Sclove, L., 1987. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 52, 333-343. https://doi.org/10.1007/BF02294360
  50. Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm developement. J. Theo. Bio. 64, 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  51. Shi, P.-J., Chen, L., Hui, C., Grissino-Mayer, H.D., 2016. Capture the time when plants reach their maximum body size by using the beta sigmoid growth equation. Ecol. Model. 320, 177-181. https://doi.org/10.1016/j.ecolmodel.2015.09.012
  52. Shi, P., Li, B-L., Ge, F., 2012. Intrinsic optimum temperature of the diamondback moth and its ecological meaning. Environ. Entomol. 41, 714-722. https://doi.org/10.1603/EN12058
  53. Shi, P., Ge, F., Sun, Y., Chen, C., 2011a. A simple model for describing the effect of temperature on insect development rate. J. Asia-Pacific Entomol. 14, 15-20. https://doi.org/10.1016/j.aspen.2010.11.008
  54. Shi, P., Ikemoto, T., Egami, C., Sun, Y., Ge, F., 2011b. A modified program for estimating the parameters of the SSI model. Environ. Entomol. 40, 462-469. https://doi.org/10.1603/EN10265
  55. Shi, P., Ge, F., 2010. A comparison of different thermal performance functions describing temperature-dependent development rates. J. Therm. Biol. 35, 225-231. https://doi.org/10.1016/j.jtherbio.2010.05.005
  56. Stinner, R.E., Gutierrez, A.P., Butler, Jr., G.D., 1974. An algorithm for temperature-dependent growth rate stimulation. Can. Entomol. 105, 145-156.
  57. SYSTAT software Inc. 2002. TableCurve 2D. Automated Curve Fitting and Equation Discovery: Version 5.01 for Windows. SYSTAT software Inc, CA, USA.
  58. Taylor, F., 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117, 1-23. https://doi.org/10.1086/283683
  59. Toyoshima, S., Arai, T., Yaginuma, K., 2010. Effect of constant temperature on the development of peach fruit moth, Carposina sasakii (Lepidoptera: Carposinidae). Bull. Natl. Inst. Fruit Tree Sci. 10, 1-8.
  60. Van'Hoff, J.H., 1901. Osmotic pressure and chemical equilibrium. Nobel Lecture, December. 13.
  61. van der Heide, T., Roijackers, R.M.M., van Nes, E.H., Peeters, E.T.H.M., 2006. A simple equation for describing the temperature dependent growth of free-floating macrophytes. Aquat. Bot. 84, 171-175. https://doi.org/10.1016/j.aquabot.2005.09.004
  62. Wagner, T.L., Olson, R.L., Willers, J.L., 1991. Modeling arthropod developing time. J. Agric. Entomol. 8, 251-270.
  63. Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R. M., Coulson, R.N., 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225. https://doi.org/10.1093/aesa/77.2.208
  64. Wang, R., Lan, Z., Ding, Y., 1982. Studies on mathematical models of the relationship between insect development and temperature. Acta Ecol. Sin. 2, 47-57.
  65. William, F., 1971. An Introduction to probability theory and its applications (Vol. 2), 2nd Ed. John Wiley & Sons Inc. 798pp.
  66. Yan, W., Hunt, L.A., 1999. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607-614. https://doi.org/10.1006/anbo.1999.0955
  67. Yin, X., Kropff, M.J., 1996. The effect of temperature on leaf appearance in rice. Ann. Bot. 77, 215-221. https://doi.org/10.1006/anbo.1996.0025
  68. Yin, X., Kropff, M.J., Goudriaan, J., 1996. Differential effects of day and night temperature on development to flowering in rice. Ann. Bot. 77, 203-213. https://doi.org/10.1006/anbo.1996.0024
  69. Yin, X., Kropff M.J., McLaren, G., Visperas, R.M., 1995. A nonlinear model for crop development as a function of temperature. Agric. For. Meteorol. 77, 1-16. https://doi.org/10.1016/0168-1923(95)02236-Q
  70. Zahiri, B., Fathipour, Y., Khanjani, M., Moharramipour, S., Zalucki, M.P., 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): picking the best model. Environ. Entomol. 39, 177-189. https://doi.org/10.1603/EN08239
  71. Zhu, G., Bu, W., Gao, Y., Liu, G., 2012. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLOS One 7, e31246. https://doi.org/10.1371/journal.pone.0031246

Cited by

  1. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae) pp.1347-605X, 2018, https://doi.org/10.1007/s13355-018-0593-5