References
- Ahn, J.J., Son, Y., He, Y., Lee, E., Park, Y-L., 2016. Effects of temperature on development and voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for climate change impacts. PLOS One 11, e0161319. https://doi.org/10.1371/journal.pone.0161319
- Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Autom. Con. 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705
- Amarasekare, P., Savage, V., 2012. A framework for elucidating the temperature dependence of fitness. Am. Nat. 179, 178-191. https://doi.org/10.1086/663677
- Arrhenius, S., 1889. Uber die Reactionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren. Zeitschrift fur Physikalische Chemie 4, 226-92.
- Bock, R.K., Krischer, W., 1998. The data analysis brief book. Berlin/Heidelberg: Springer-Verlag.
- Briere, J.F., Pracros, P., Le Roux, L.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
- Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: A practical information theoretic approach. Springer, New York. 488pp.
- Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
- Campolo, O., Malcrino, A., Laudani, F., Maione, V., Zappala, L., Palmeri, V., 2014. Population dynamics and temperaturedependent development of Chrysomphalus aonidum (L.) to aid sustainable pest management decisions. Neotrop. Entomol. 43, 453-464. https://doi.org/10.1007/s13744-014-0226-9
- Cho, Y.-Y., Oh, M.-M., Son, J.-E., 2009. Modeling approaches for estimating cardinal temperatures by bilinear, parabolic, and Beta distribution functions. Korean J. Hortic. Sci. Technol. 27, 239-243.
- Crozier, W.J., 1926. On curves of growth, especially in relation to temperature. J. Gen. Physiol. 10, 53-73. https://doi.org/10.1085/jgp.10.1.53
- Curry, G.L., Feldman, R.M., 1987. Mathematical foundations of population dynamics. Mono. Ser. 3. Tex. Eng. Exp. Stn., College Station, TX. 246pp.
- Damos, P., Savopoulou-Soultani, M., 2012. Temperature-driven models for insect development and vital thermal requirements. Psyche 2012, 1-13
- Damos, P.T., Savopoulou-Soultani, M., 2008. Temperature dependent bionomics and modeling of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory. J. Econ. Entomol. 101, 1557-1567. https://doi.org/10.1093/jee/101.5.1557
- Dixon, A.F.G., Honek, A., Keil, P., Kotela, M.A.A., Sizling, A.L., Jarosik, V., 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23, 257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
- Drost, Y.C., van Lenteren, J.C., van Roermund, H.J.W., 1998. Lift-history parameters of different biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to temperature and host plant: a selective review. B. Entomol. Res. 88, 219-229. https://doi.org/10.1017/S0007485300025840
- Eubank, W.P., Atmar, J.W., Ellington, J.J., 1973. The significance and thermodynamics of fluctuating versus static thermal environment on Heliothis zea egg development rates. Environ. Entomol. 2, 491-496. https://doi.org/10.1093/ee/2.4.491
- Evans, M.G., Polanyi, M., 1935. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875-894. https://doi.org/10.1039/tf9353100875
- Eyring, H. 1935. The activated complex in chemical reactions. J. Chem. Phys. 3: 107-115. https://doi.org/10.1063/1.1749604
- Fand, B.B., Sul, N.T., Bal, S.K., Minhas, P.S., 2015. Temperature impacts the development and survival of common cutworm (Spodoptera litura): Simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLOS One e0124682.
- Got, B., Piry, S., Migeon, A., Labatte, M.J., 1997. Comparison of different models for predicting development time of the european corn borer (Lepidoptera: Pyralidae). Environ. Entomol. 26, 46-60. https://doi.org/10.1093/ee/26.1.46
- Higley, L.G., Pedigo, L.P., Ostle, K.R., 1986. DEGDAY: a program for calculating degree-days, and assumptions behind the degree-day approach. Environ. Entomol. 15, 999-1016. https://doi.org/10.1093/ee/15.5.999
- Hilbert, D.W., Logan, J.A., 1983. Empirical model of nymphal development for migratory grasshopper, Meldnoplus sanguinipes (Orthoptera: Acrididae). Environ. Entomol. 12, 1-5. https://doi.org/10.1093/ee/12.1.1
- Holling, C.S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 45, 5-60.
- Honek, A., 1999. Constraints on thermal requirements for insect development. Entomol. Sci. 2, 615-621.
- Huey, R.B., Kingsolver, J.G., 1989. Evolution of thermal sensitivity of ectotherm performance. TREE 4, 131-135.
- Huey, R.B., Stevenson, R.D., 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Amer. Zool. 19, 357-366. https://doi.org/10.1093/icb/19.1.357
- Hultin, E., 1955. The influence of Temperature on the rate of enzyme processes. Acta Chem. Scand. 9, 1700-1710. https://doi.org/10.3891/acta.chem.scand.09-1700
- Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34, 1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
- Ikemoto, T., 2003. Possible existence of a common temperature and a common duration of development among members of a taxonomic group of arthropods that underwent speciational adaptation to temperature. Appl. Entomol. Zool. 38, 487-492. https://doi.org/10.1303/aez.2003.487
- Ikemoto, T., Kurahashi, I, Shi, P-J., 2013. Confidence interval of intrinsic optimum temperature estimated using the thermodynamic SSI model. Insect Science 20, 420-428. https://doi.org/10.1111/j.1744-7917.2012.01525.x
- Janisch, E., 1925. Uber die temperaturabhangigbeit biologischer vorgange und ihre kurvenmassige analyse. Arch. Ges. Physiolo. 209, 414-436. https://doi.org/10.1007/BF01730929
- Johnson, F.H., Lewin, I., 1946. The growth rate of E. coli in relation to temperature, quinine and coenzyme. J. Cell. Comp. Physiol. 28, 47-75. https://doi.org/10.1002/jcp.1030280104
- Kim, D.-S., Lee, J.-H., Yiem, M.-S., 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models. Environ. Entomol. 30, 298-305 https://doi.org/10.1603/0046-225X-30.2.298
- Kontodimas, D.C., Eliopoulos, P.A., Stathas, G.J., Economou, L.P., 2004. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluating of a linear and various nonlinear models using specific criteria. Environ. Entomol. 33, 1-11. https://doi.org/10.1603/0046-225X-33.1.1
- Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
- Lin, C.C., Segel, L.A., 1974. Mathematics applied to deterministic problems in the natural sciences. Macmillan Publishing Co., Inc., New York. 604 pp.
- Liu, S.S., Meng, X.D., 2000. Modelling development time of Lipaphis erysimi (Hemiptera: Aphididae) at constant and variable temperatures. Bull. Entomol. Res. 90, 337-347.
- Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
- Pradhan, S., 1946. Insect population studies. IV. Dynamics of temperature effect on insect development. Proc. Nat. Inst. Sci. India 12, 385-404.
- Pruess, K.P., 1983. Day-degree methods for pest management. Environ. Entomol. 12, 613-619. https://doi.org/10.1093/ee/12.3.613
- Regniere, J., Powell, J., Bentz, B., Nealis, V., 2012. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J. Insect Physiol. 58, 634-647. https://doi.org/10.1016/j.jinsphys.2012.01.010
- Robertson, T.B., 1923. The chemical basis of growth and senescence. Lippincott, Phildelphia. 389pp.
- Roy, M., Brodeur, J., Cloutier, C., 2002. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ. Entomol. 31, 177-187. https://doi.org/10.1603/0046-225X-31.1.177
- Ryoo, M.I., Cho, K.J., 1988. A model for the temperature-dependent developmental rate of S. oryzae L. (Coleoptera: Curculionidae) on rice. J. Stored Prod. Res. 24, 79-82. https://doi.org/10.1016/0022-474X(88)90034-3
- SAS Institute, 1999. SAS System for Window, Release 8.02. SAS Institute, Cary, NC.
- Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nolinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theo. Biol. 88, 715-731.
- Schwartz, G., 1978,. Estimating dimensions of a model. Ann. Stat. 6, 461-464. https://doi.org/10.1214/aos/1176344136
- Sclove, L., 1987. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 52, 333-343. https://doi.org/10.1007/BF02294360
- Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm developement. J. Theo. Bio. 64, 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
- Shi, P.-J., Chen, L., Hui, C., Grissino-Mayer, H.D., 2016. Capture the time when plants reach their maximum body size by using the beta sigmoid growth equation. Ecol. Model. 320, 177-181. https://doi.org/10.1016/j.ecolmodel.2015.09.012
- Shi, P., Li, B-L., Ge, F., 2012. Intrinsic optimum temperature of the diamondback moth and its ecological meaning. Environ. Entomol. 41, 714-722. https://doi.org/10.1603/EN12058
- Shi, P., Ge, F., Sun, Y., Chen, C., 2011a. A simple model for describing the effect of temperature on insect development rate. J. Asia-Pacific Entomol. 14, 15-20. https://doi.org/10.1016/j.aspen.2010.11.008
- Shi, P., Ikemoto, T., Egami, C., Sun, Y., Ge, F., 2011b. A modified program for estimating the parameters of the SSI model. Environ. Entomol. 40, 462-469. https://doi.org/10.1603/EN10265
- Shi, P., Ge, F., 2010. A comparison of different thermal performance functions describing temperature-dependent development rates. J. Therm. Biol. 35, 225-231. https://doi.org/10.1016/j.jtherbio.2010.05.005
- Stinner, R.E., Gutierrez, A.P., Butler, Jr., G.D., 1974. An algorithm for temperature-dependent growth rate stimulation. Can. Entomol. 105, 145-156.
- SYSTAT software Inc. 2002. TableCurve 2D. Automated Curve Fitting and Equation Discovery: Version 5.01 for Windows. SYSTAT software Inc, CA, USA.
- Taylor, F., 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117, 1-23. https://doi.org/10.1086/283683
- Toyoshima, S., Arai, T., Yaginuma, K., 2010. Effect of constant temperature on the development of peach fruit moth, Carposina sasakii (Lepidoptera: Carposinidae). Bull. Natl. Inst. Fruit Tree Sci. 10, 1-8.
- Van'Hoff, J.H., 1901. Osmotic pressure and chemical equilibrium. Nobel Lecture, December. 13.
- van der Heide, T., Roijackers, R.M.M., van Nes, E.H., Peeters, E.T.H.M., 2006. A simple equation for describing the temperature dependent growth of free-floating macrophytes. Aquat. Bot. 84, 171-175. https://doi.org/10.1016/j.aquabot.2005.09.004
- Wagner, T.L., Olson, R.L., Willers, J.L., 1991. Modeling arthropod developing time. J. Agric. Entomol. 8, 251-270.
- Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R. M., Coulson, R.N., 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225. https://doi.org/10.1093/aesa/77.2.208
- Wang, R., Lan, Z., Ding, Y., 1982. Studies on mathematical models of the relationship between insect development and temperature. Acta Ecol. Sin. 2, 47-57.
- William, F., 1971. An Introduction to probability theory and its applications (Vol. 2), 2nd Ed. John Wiley & Sons Inc. 798pp.
- Yan, W., Hunt, L.A., 1999. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607-614. https://doi.org/10.1006/anbo.1999.0955
- Yin, X., Kropff, M.J., 1996. The effect of temperature on leaf appearance in rice. Ann. Bot. 77, 215-221. https://doi.org/10.1006/anbo.1996.0025
- Yin, X., Kropff, M.J., Goudriaan, J., 1996. Differential effects of day and night temperature on development to flowering in rice. Ann. Bot. 77, 203-213. https://doi.org/10.1006/anbo.1996.0024
- Yin, X., Kropff M.J., McLaren, G., Visperas, R.M., 1995. A nonlinear model for crop development as a function of temperature. Agric. For. Meteorol. 77, 1-16. https://doi.org/10.1016/0168-1923(95)02236-Q
- Zahiri, B., Fathipour, Y., Khanjani, M., Moharramipour, S., Zalucki, M.P., 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): picking the best model. Environ. Entomol. 39, 177-189. https://doi.org/10.1603/EN08239
- Zhu, G., Bu, W., Gao, Y., Liu, G., 2012. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLOS One 7, e31246. https://doi.org/10.1371/journal.pone.0031246
Cited by
- Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae) pp.1347-605X, 2018, https://doi.org/10.1007/s13355-018-0593-5