DOI QR코드

DOI QR Code

Chemical Characteristics of Timbers from the Yeongheungdo Shipwreck

영흥도선의 화학적 특성

  • Cha, Mi Young (Underwater Excavation & Conservation Division, National Research Institute of Maritime Cultural Heritage)
  • 차미영 (국립해양문화재연구소 수중발굴과)
  • Received : 2016.11.16
  • Accepted : 2017.02.09
  • Published : 2017.02.20

Abstract

The Yeongheungdo shipwreck was excavated in the sea of Seomeopbeol, Ongjin-gun, Incheon, Korea. Chemical characterization of timbers from the shipwreck occurred via maximum moisture content, chemical composition, FT-IR, solid state $^{13}C$ NMR, and XRD analyses. As maximum moisture content of the outer part of the timbers averaged 623%, a phenomenon in that lignin increased relatively, according to the decrease in cellulose, and the ash content increased, which is typical of waterlogged archaeological wood was shown. The results from the FT-IR and solid state $^{13}C$ NMR analyses showed that the cellulose band of the outer part had disappeared or had remarkably decreased. In addition, the bands assigned to lignin dramatically increased. However, regarding the inner part of the timbers, hemicellulose and some crystalline cellulose and amorphous cellulose bands decreased. Therefore, a large difference exists between the degradation levels of the outer and inner parts of the timbers of the Yeongheungdo shipwreck.

영흥도선은 인천 옹진군 섬업벌 해역에서 인양된 통인신라시대의 고선박이다. 이 고선박의 상태를 파악하기 위하여 최대함수율과 온수추출, 알카리추출, 유기용매추출, 리그닌, 홀로셀룰로오스, 회분 분석을 통한 화학조성 분석과 FT-IR 및 solid state $^{13}C$ NMR, XRD을 통해 화학적 특성을 조사하였다. 영흥도선 선체편 외층의 최대함수율은 평균 623%로 수침고목재의 전형적인 특징인 셀룰로오스 감소에 따른 리그닌의 상대적인 증가 및 회분이 증가하는 현상을 보여주었다. 즉 영흥도선 선체편 외층의 셀룰로오스 흡수피크는 소멸되거나 현저하게 감소되어 나타났다. 또한 리그닌을 나타내는 흡수피크는 급격하게 증가하였다. 그러나 영흥도선 선체편 내층의 경우 헤미셀룰로오스와 일부 결정 및 비결정 영역의 셀룰로오스 흡수피크가 감소하여 나타났다. 따라서 영흥도선 선체편의 외층과 내층의 분해 정도의 차이가 큼을 보여주었다.

Keywords

References

  1. Bardet, M., Gerbaud, G., Giffard, M., Doan, C., Hediger, S. and Pape, L.L., 2009, $^{13}C$ high-resolution solid-state NMR for structural elucidation of archaeological woods. Progress in Nuclear Magnetic Resonance Spectroscopy, 55, 199-214. https://doi.org/10.1016/j.pnmrs.2009.02.001
  2. Bjordal, C.G., 2012, Microbial degradation of waterlogged archaeological wood. Journal of Cultural Heritage, 13, 118-122. https://doi.org/10.1016/j.culher.2012.02.003
  3. Cha, M.Y., Lee, K.H., and Kim, Y.S., 2006, Alteration of physical and chemical characteristics of waterlogged archaeological woods after cleaning. Journal of Conservation Science, 19, 19-30. (in Korean with English abstract)
  4. De Jong, J., 1977, Conservation techniques for old waterlogged wood from shipwrecks found in the Netherlands. in Walters A.H.(ed.), Biodeterioration investigation techniques. Applied Science Publishers, London, 295-338.
  5. Fors, Y., Nilsson, T., Risberg, E.D., Sandstrom, M. and Torssander, P., 2008, Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: implications for marine archaeological wood and fossil fuels. International Biodeterioration and Biodegradation, 62, 336-347. https://doi.org/10.1016/j.ibiod.2007.11.008
  6. Giachi, G., Bettazzi, F., Chimichi, S. and Staccioli, G., 2003, Chemical characterization of degraded wood in ships discovered in a recent excavation of the Etruscan and Roman harbour of Pisa. Journal of Cultural Heritage, 4, 75-83. https://doi.org/10.1016/S1296-2074(03)00018-9
  7. Grattan, D.W., 1987, 3 Waterlogged wood. Conservation of Marine Archaeological Objects, Butterworth & Co., Oxford. 55-67.
  8. Hedges, J.I., 1990, The chemistry of archaeological wood, Archaeological wood properties chemistry and preservation. American Chemical Society, Washington D.C., 111-140.
  9. Hoffmann, P., 1981, Chemical wood analysis as a means of characterizing archaeological wood. Proceedings of the ICOM Waterlogged Wood Working Group Conference, Ottawa, September 5-18, 73-83.
  10. Hoffmann, P. and Jones, M.A., 1990, Structure and degradation process for waterlogged archaeological wood. Archaeological Wood Properties Chemistry and Preservation. American Chemical Society, Washington D.C., 35-65.
  11. Jensen, P. and Gregory, D.J., 2006, Selected physical parameters to characterize the state of preservation of waterlogged archaeological wood: a practical guide for their determination. Journal of Archaeological Science, 33, 551-559. https://doi.org/10.1016/j.jas.2005.09.007
  12. Kim, E.H. and Cha, M.Y., 2014, Identification of timber of Yeongheungdo Shipwreck. Incheon Ongjingun Yeongheungdo Shipwreck Underwater Excavation. 368-372. (in Korean)
  13. Kim, I.J., 1990a, Chemical and micromorphological changes of archaeological waterlogged wood degraded in marine situations. Conservation Studies, 11, 157-169. (in Korean)
  14. Kim, I.J., 1993, Conservation and characteristics of timber form the Jindo logboat. Report on the Excavation of Jindo Logboat Mokpo Conservation Institute for Maritime Archaeological Finds, 121-129. (in Korean)
  15. Kim, Y.S., 1990b, Chemical characteristics of waterlogged wood. Holzforschung. 44, 169-172. https://doi.org/10.1515/hfsg.1990.44.3.169
  16. Kim, Y.S. and Newman, R.H., 1995, Solid state $^{13}C$ NMR study of wood degraded by the brown rot fungus Gloeophyllum trabeum. Holzforschung, 49, 109-114. https://doi.org/10.1515/hfsg.1995.49.2.109
  17. Kim, Y.S., Kim, G.H. and Kim, Y.S., 2004, Wood Protection Science. Chonnam National University Press. (in Korean)
  18. Kim, Y.S. and Singh, A.P., 2000, Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA Journal, 21, 135-155.
  19. Kuo, M.L., McClelland, J.F., Luo, S., Chien, P.L., Walker, R.D. and Hse, C.Y., 1988, Applications of infrared photo-acoustic spectroscopy for wood samples. Wood Fiber Science, 20, 132-145.
  20. Lee, W.Y. and Kim, N.H., 1992, Fine structure of some major softwoods and Hardwoods by x-ray diffraction methods. Mokchae Konghak, 20(1), 28-37. (in Korean with English abstract)
  21. Lionetto, F., Quarta, G., Cataldi, A., Cossa, A., Auriemma, R., Calcagnile, L. and Frigione, M., 2014, Characterization and dating of waterlogged woods from an ancient harbor in Italy. Journal of Cultural Heritage, 15, 213-217. https://doi.org/10.1016/j.culher.2013.02.003
  22. National Research Institute of Maritime Cultural Heritage, 2014, Incheon Ongjingun Yeongheungdo Shipwreck underwater excavation. (in Korean with English abstract)
  23. Oron, A., Liphschitz, N., Held, B.W., Galili, E., Klein, M., Linker, R. and Blanchette, R., 2016, Characterization of archaeological waterlogged wooden objects exposed on the hyper-saline Dead Sea shore. Journal of Archaeological Science, 9, 73-86. https://doi.org/10.1016/j.jasrep.2016.06.049
  24. Pizzo, B., Pecoraro, E., Alves, A., Macchioni, N. and Rodrigues, J.C., 2015, Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Talanta, 131, 14-20. https://doi.org/10.1016/j.talanta.2014.07.062
  25. Salanti, A., Zoia, A., Tolppa, E.L., Giachi, G. and Orlandi, M., 2010, Characterization of waterlogged wood by NMR and GPC techniques. Microchemical Journal, 95, 345-352. https://doi.org/10.1016/j.microc.2010.02.009
  26. Sawada, M., 2000, Introduction of conservation science(trans. Kim, S.B. and Chung, K.Y.). Seokyung Publishing Co., 89-93. (Original work published 1997)
  27. Segal, L., Creely, J.J., Martin, A.E. and Conrad, C.M., 1959, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29, 786-794. https://doi.org/10.1177/004051755902901003
  28. Singh, A.P., 2012, A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. Journal of Cultural Heritage, 13, 16-20. https://doi.org/10.1016/j.culher.2012.04.002
  29. Technical Association of Pulp and Paper Industry, 1996-1997, TAPPI standard.
  30. The Korean Society of Conservation Science for Cultural Heritage, 2011, Conservation Science Terminology. (in Korean)
  31. Wise, I.E., Murphy M. and D'Addieco A.A., 1946, Chlorite Holocellulose, it's fraction bearing on summative wood analysis and on the hemicelluloses. Paper Trade Journal, 122, 35-43.