DOI QR코드

DOI QR Code

Effect of Post-deposition Annealing in a Nitrogen Atmosphere on the Properties of SnO2 Thin Films

질소분위기 열처리에 따른 SnO2 박막의 구조적, 전기광학적 특성 변화

  • Song, Young-Hwan (School of Materials Science and Engineering, University of Ulsan) ;
  • Eom, Tae-Young (School of Materials Science and Engineering, University of Ulsan) ;
  • Heo, Sung-Bo (Korea Institute of Industrial Technologies) ;
  • Kim, Jun-Ho (Korea Institute of Industrial Technologies) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • 송영환 (울산대학교 첨단소재공학부) ;
  • 엄태영 (울산대학교 첨단소재공학부) ;
  • 허성보 (한국생산기술연구원, 첨단하이브리드생산기술센터) ;
  • 김준호 (한국생산기술연구원, 첨단하이브리드생산기술센터) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2016.12.02
  • Accepted : 2016.12.28
  • Published : 2017.01.30

Abstract

A 100 nm thick $SnO_2$ thin films were prepared by radio frequency magnetron sputtering on glass substrates and then annealed in nitrogen atmosphere for 30 minutes at 100, 200, and $300^{\circ}C$, respectively. While the visible light transmittance and electrical resistivity of as deposited $SnO_2$ films were 81.8% and $1.5{\times}10^{-2}{\Omega}cm$, respectively, the films annealed at $200^{\circ}C$ show the increased optical transmittance of 82.8% and the electrical resistivity also decreased as low as $4.3{\times}10^{-3}{\Omega}cm$. From the observed results, it is concluded that post-deposition annealing in nitrogen atmosphere at $200^{\circ}C$ is an attractive condition to optimize the optical and electrical properties of $SnO_2$ thin films for the various display device applications.

Keywords

References

  1. C. Guillen and J. Herrero : Thin Solid Films, 520 (2011) 1. https://doi.org/10.1016/j.tsf.2011.06.091
  2. F. Wang and C. Chang : Appl. Surf. Sci., 370 (2016) 83. https://doi.org/10.1016/j.apsusc.2016.02.161
  3. S. Lin, Y. Tsai and K. Bai : Appl. Surf. Sci., 380 (2016) 203. https://doi.org/10.1016/j.apsusc.2016.01.188
  4. H. De Waal and F. Simons : Thin Solid Films, 77 (1981) 253. https://doi.org/10.1016/0040-6090(81)90380-1
  5. S. Kim and J. T. Song : Trans. Electr. Electron. Mater., 8 (1995) 278.
  6. Y. Muto, S. Nakatomi, N. Oka, Y. Iwabuchi, H. Kotsubo and Y. Shigesato : Thin Solid Films, 520 (2012) 3746. https://doi.org/10.1016/j.tsf.2011.10.061
  7. Y. Cho, N. S. Parmar, S. Nahm and J. Choi : J. Alloys Compd, 694 (2017) 217. https://doi.org/10.1016/j.jallcom.2016.09.293
  8. G. Haacke : J. Appl. Phys., 47 (1976) 4086. https://doi.org/10.1063/1.323240
  9. B. D. Cullity : Elements of X-ray Diffractions, Addition-Wesley, Reading, MA, 1978.
  10. S. K. Kim and D. Kim : J. Kor. Inst. Surf. Eng., 47 (2014) 81. https://doi.org/10.5695/JKISE.2014.47.2.081
  11. G. P. Choi, Y. Park, H. Ryu, W. Noh, Y. Kwon and J. S. Park, J. Korean Ceram. Soc. 41 (2004) 36. https://doi.org/10.4191/KCERS.2004.41.1.036
  12. 허성보 : 전자빔 조사 에너지에 따른 GZO/$TiO_2$ 박막의 물성변화, 울산대 석사학위논문 (2013).