References
- Akiyama, K. and Kuroda, M. (1997), "Fundamental frequencies of rectangular plates with linearly varying thickness", J. Sound Vib., 205(3), 380-384. https://doi.org/10.1006/jsvi.1997.1058
- Bellman, R. and Casti, J. (1971), "Differential quadrature and long term integration", J. Math. Anal. Appl., 34, 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
- Bert, C.W. and Malik, M. (1996), "Differential quadrature methods in computational mechanics: a review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
- Bert, C.W. and Malik, M. (1996), "Free vibration analysis of tapered rectangular plate by differentia quadrature method-a semi-analytical approach", J. Sound Vib., 190(1), 41-63. https://doi.org/10.1006/jsvi.1996.0046
- Cal, R. and Saini, F. (2013), "Buckling and vibration of nonhomogeneous rectangular plates subjected to linearly varying in-plane force", Shock Vib. Dig., 20, 879-894. https://doi.org/10.1155/2013/579813
- Cheung, Y.K. and Zhou, D. (1989), "The free vibrations of tapered rectangular plates using a new set of beam functions with the Rayleigh-Ritz method", J. Sound Vib., 223, 703-722.
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Civalek, O. (2006), "Harmonic differential quadratic finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation , J. Sound Vib., 294. 966-980. https://doi.org/10.1016/j.jsv.2005.12.041
- Civalek, O. (2009), "Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method", Appl. Math. Model., 33, 3825-3835. https://doi.org/10.1016/j.apm.2008.12.019
- Civalek, O. and Ulker, M. (2004), "Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates", Struct. Eng. Mech., 17(1), 1-14. https://doi.org/10.12989/sem.2004.17.1.001
- Civalek, O. and Ulker, M. (2005), "HDQ-FD integrated methodology for nonlilnear static and dynamic response of doubly curved shallow shells", Struct. Eng. Mech., 19(5), 535-550. https://doi.org/10.12989/sem.2005.19.5.535
- Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirhhoff plates subjected to compressive loads on two- opposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
- Dokainish, M.A. and Kumar, K. (1973), "Vibration of orthotropic parallelogram plate with variable thickness", AIAA J., 11(12), 1618-1621. https://doi.org/10.2514/3.50658
- Eisenberger, M. and Alexandrov, A. (2003), "Buckling loads of variable thickness thin isotropic plates", Thin Wall. Struct., 41(9), 871-889 https://doi.org/10.1016/S0263-8231(03)00027-2
- Fares, M.E. and Zenkour, A.M. (1999), "Bucking and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories", Compos. Struct., 44(4), 279-287. https://doi.org/10.1016/S0263-8223(98)00135-4
- Ferreira, A.J.M., Roque, C.M.C., Carrera, E. and Cinefra, M. (2011), "Analysis of thick isotropic and cross-ply laminated plates by radial basis functions and a unified formulation", J. Sound Vib., 330, 771-787. https://doi.org/10.1016/j.jsv.2010.08.037
- Gorman, D.J. (1993), "Accurate free vibration analysis of the completely free orthotropic rectangular plates by the method of superposition", J. Sound Vib., 65, 409-420.
- Huang, M., Ma, X.Q., Sakiyama, T., Matuda, H. and Morita, C. (2005), "Free vibration analysis of orthotropic rectangular plates with variable thickness and general boundary conditions", J. Sound Vib., 287, 931-955.
- Kang, J.H. and Leissa, A.W. (2005), "Exact solutions for the buckling of rectangular plates having varying in-plane loading on two opposite simply supported edges", Int J. Solid. Struct., 42, 4220-38. https://doi.org/10.1016/j.ijsolstr.2004.12.011
- Kukreti, A.A., Farsa, J. and Bert, C.W. (1996), "Differential quadrature and Rayleigh-Ritz methods in determining the fundamental frequencies of simply supported plates with linearly varying thickness", J. Sound Vib., 189, 103-122. https://doi.org/10.1006/jsvi.1996.0008
- Lal, R. (2007), "Transverse vibration of non-homogeneous orthotropic rectangular plate of variable thickness: a spline technique", J. Sound Vib., 306, 203-214. https://doi.org/10.1016/j.jsv.2007.05.014
- Lal, R. and Gupta, U.S. (1997), "Quintic splines on the study of transverse vibrations of non-uniform orthotropic rectangular plates", J. Sound Vib., 208, 1-13. https://doi.org/10.1006/jsvi.1997.1083
- Lal, R., Gupta, U.S. and Goel, C. (2001), "Chebyshev polynomials in the study of Transverse vibrations of non-uniform rectangular orthotropic plates", Shock Vib. Dig., 33, 103-112. https://doi.org/10.1177/058310240103300202
- Laura, P.A.A. and Gutierrez, R.H. (1993), "Analysis of vibrating Timoshenko beam using the method of differential quadrature", Shock Vib. Dig., 1, 89-93. https://doi.org/10.1155/1993/124195
- Leissa, A.W. (1969), "Vibration of plates", NASA, SP- 160, US Govt Printing office, Washington, DC.
- Leissa, A.W. (1977), "Recent research in plate vibrations, 1973-1976: classical theory", Shock Vib. Dig., 9, 13-24.
- Leissa, A.W. (1987), "Recent studies in plate vibrations: 1981-85, Part II, complicating effect", Shock Vib. Dig., 19, 19-24.
- Leissa, A.W. (1987), "Recent studies in plate vibrations: Part I, classical theory", Shock Vib. Dig., 19, 11-18.
- Lekhnitskii, S.G. (1968), Anisotropic Plates, Gordon and Breach, New York.
- Liew, K.M. and Wang, C.M. (1993), "pb2-Rayleigh-Ritz method for general plate analysis", Eng. Struct., 15(1), 55-60. https://doi.org/10.1016/0141-0296(93)90017-X
- Lim, C.W. and Liew, K.M. (1993), "Effect of boundary constraint and thickness variation on the vibratory response of rectangular plates", Thin Wall. Struct., 17(2), 133-159. https://doi.org/10.1016/0263-8231(93)90031-5
- Liu, F.L. (2000), "Rectangular thick plates on Winkler foundation: differential quadrature element solution", Int. J. Solid. Struct., 37, 1743-1763, https://doi.org/10.1016/S0020-7683(98)00306-0
- Lopatin, A.V. and Morozov, E.V. (2009), "Buckling of the SSFF rectangular orthotropic plate under in-plane pure bending", Compos. Struct., 90, 287-2904. https://doi.org/10.1016/j.compstruct.2009.03.006
- Lopatin, A.V. and Morozov, E.V. (2010), "Buckling of the CCFF orthotropic rectangular plates under in-plane pure bending", Compos. Struct., 92, 1423-31. https://doi.org/10.1016/j.compstruct.2009.10.038
- Lopatin, A.V. and Morozov, E.V. (2011), "Buckling of the SSCF rectangular orthotropic plates subjected to linearly varying inplane loading", Compos. Struct., 93, 1900-1909. https://doi.org/10.1016/j.compstruct.2011.01.024
- Lopatin, A.V. and Morozov, E.V. (2014), "Approximate buckling analysis of the CCFF ;orthotropic plates subjected to in-plane bending", Int. J. Mech. Sci., 85, 38-44. https://doi.org/10.1016/j.ijmecsci.2014.05.003
- Malekzadeh, P. and Shahpari, S.A. (2005), "Free vibration analysis of variable thickness thin and moderately thick plates with elastically restrained edges by differential quadrature method", Thin Wall. Struct., 43, 1037-1050. https://doi.org/10.1016/j.tws.2004.11.008
- Ng, S.F. and Araar, Y. (1989), "Free vibration and buckling analysis of clamped rectangular plates of variable thickness by equilibrium method", J. Sound Vib., 135(2), 263-274. https://doi.org/10.1016/0022-460X(89)90725-6
- Rajasekaran, S. (2013), "Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using Differential Transformation and quadrature methods", Appl. Math. Model., 37, 4440-4463. https://doi.org/10.1016/j.apm.2012.09.024
- Rajasekaran, S. and Wilson, A.J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different conditions by finite difference technique", Struct. Eng. Mech., 46(2), 269-294. https://doi.org/10.12989/sem.2013.46.2.269
- Rao, G.V., Rao, B.P. and Raju, L.S. (1974), "Vibration of inhomogeneous plates using a high precision triangular element", J. Sound Vib., 34, 444-445. https://doi.org/10.1016/S0022-460X(74)80323-8
- Reddy, J.N. (2004), Mechanics of Laminated composite plates and Shells:Theory and Analysis, 2nd Edition, CRC Press, Boca Raton, Florida.
- Shu, C. (2000), Differential Quadrature and its Application in Engineering, London, Springer-Verlag.
- Tang, Y. and Wang, X. (2011), "Buckling of symmetrically laminated rectangular plates under parabolic edge compression", Int. J. Mech. Sci., 53, 91-97. https://doi.org/10.1016/j.ijmecsci.2010.11.005
- Timoshenko, S.P. and Gere, J.M. (1963), Theory of Elastic Stability, 2nd Edition, McGraw-Hill, New York.
- Timoshenko, S.P. and Krieger, S.W. (1959), Theory of Plates and Shells, Second Edition, McGraw-Hill Inc., USA.
- Tomar, J.S., Gupta, D.C. and Jain, N.C. (1984), "Free vibrations of an isotropic non-homogeneous infinite plate of parabolically varying thickness", Ind. J. Pure Appl. Math., 15, 11-220.
- Wang, X. (2015) Differential Quadrature and Differential Quadrature Based Element Methods: theory and Aplication, Elsevier Inc.
- Wilson, E.L. (2002) Three Dimensional Static and Dynamic Analysis of Structures, Computers and Structures Inc, Berkeley, California
- Xiang, Y. (2003), "Exact solutions for buckling of multi-span rectangular plate", ASCE J. Eng. Mech., 129, 181-187. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(181)
- Xiang, Y. and Wei, G.W. (2004), "Exact solutions for buckling and vibration of stepped rectangular Mindlin plates", Int. J. Solid. Stuct., 41, 279-294. https://doi.org/10.1016/j.ijsolstr.2003.09.007
- Xiang, Y.F. and Liu, B. (2009), "New exact solutions for free vibrations of thin orthotropic rectangular plates", Compos. Struct., 89, 567-574. https://doi.org/10.1016/j.compstruct.2008.11.010
- Zhong, H. and Gu, C. (2010), "Buckling of symmetrical cross-ply composite rectangular plats under a linearly varying in-plane loads", Int. J. Mech. Sci., 52, 819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009
- Zong, Z. and Zhang, Y. (2009), Advanced Differential Quadrature Methods, CRC Press.
Cited by
- Bending, buckling and vibration of small-scale tapered beams vol.120, 2017, https://doi.org/10.1016/j.ijengsci.2017.08.005
- Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM vol.33, pp.2, 2017, https://doi.org/10.12989/scs.2019.33.2.307
- Non-Linear dynamic pulse buckling of laminated composite curved panels vol.73, pp.2, 2017, https://doi.org/10.12989/sem.2020.73.2.181