참고문헌
- Avigad, J. and Harrison, J. (2014), "Formally verified mathematics", Communications of the ACM, 57(4), pp. 66-75. https://doi.org/10.1145/2591012
- Aydemir, B. E., Charguéraud, A., Pierce, B. C., Pollack, R., and Weirich, S. (2008), "Enginerring formal metatheory", ACM SIGPLAN Notices, 43(1), pp. 3-15. https://doi.org/10.1145/1328897.1328443
- Barendregt, H. (1981), The Lambda Calculus - Its Syntax and Semantics, North-Holland.
- Bertot , Y. and Casteran, P. (2004), Interactive Theorem Proving and Program Development - Coq'Art: The Calculus of Inductive Constructions, Springer.
- Church, A. (1940), "A formulation of the simple theory of types", Jounal of Symbolic Logic, 5(2), pp. 56-68. https://doi.org/10.2307/2266170
- Coquand, T. (1991), "An algorithm for testing conversion in Type Theory", in Huet and Plotkin (eds.), Logical Frameworks, Cambridge University Press, pp. 255-279.
- Curry, H.B. and Feys, R. (1958), Combinatory Logic Volume 1, North Holland.
- Ebert, P. and Rossberg (2013), M. Gottlog Frege: Basic Laws of Arithmetic, Oxford University Press.
- Frege, G. (1879), Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Verlag von Nebert.
- Frege, G. (1893, 1903), Grundgesetze der Arithmetik Volume 1 and 2, Verlag Hermann Pohle.
- Gabbay, M. and Pitts, A. (2002), "A new approach to abstract syntax with variable binding", Formal aspects of computing, 13(3-5), pp. 341-363. https://doi.org/10.1007/s001650200016
- Gacek, A. (2008), "The Abella interactive theorem prover (system description)", Lecture Notes in Computer Science, 5195, pp. 154-161.
- Gentzen, G. (1934), "Untersuchungen über das logische Schliesen. I", Mathematische Zeitschrift, 39(2), pp. 176-210.
- Geuvers, H. (2009), "Proof assistants: History, ideas and future", Sadhana Journal, 34(1), pp. 3-25. https://doi.org/10.1007/s12046-009-0001-5
- Godel, K. (1958), "Uber eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes", Dialectica, 12, pp. 280-287. https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
- Hales, T. et al. (2015), "A formal proof of the Kepler conjecture", arXiv.org, https://arxiv.org/abs/1501.02155.
- Harrison, J. (2009), "HOL Light: An overview", Lecture Notes in Computer Science, 5674, pp. 60-66.
- Hilbert, D. (1899), Grundlagen der Geometrie, Teubner Verlag.
- Huet, G. and Plotkin, G. (1991), Logical Frameworks, Cambridge University Press.
- McKinna, J. and Pollack, R. (1993), "Pure type systems formalized", Lecture Notes in Computer Science, 664, pp. 69-111.
- McKinna, J. and Pollack, R. (1999), "Some lambda calculus and type theory formalized", Journal of Automated Reasoning, 23(3-4), pp. 373-409. https://doi.org/10.1023/A:1006294005493
- Momigliano, A., Martin, A. J., and Felty, A. P. (2008), "Two-level hybred: A system for reasoning using higher-order abstract syntax", Electronic Notes in Theoretical Computer Science, 196, pp. 85-93. https://doi.org/10.1016/j.entcs.2007.09.019
- Nipkow, T., Paulson, L.C., and Wenzel, M. (2002), Isabelle/HOL: A proof assistant for higher-order logic, Springer.
- Peano, J. (1899), Arithmetices principia, nova methodo exposita, Fratres Bocca.
- Pfenning, F. and Schurmann, C. (1999), "System description: Twelf - A meta-logical framework for deductive systems", Lecture Notes in Computer Science, 1632, pp. 202-206.
- Prawitz, D. (1965), Natural Deduction, Almqvist & Wiksell.
- Sato, M. and Pollack, R. (2010), "External and internal syntax of the lambda-calculus", Journal of symbolic computation, 45(5), pp. 598-616. https://doi.org/10.1016/j.jsc.2010.01.010
- Urban, C. (2008), "Nominal Techniques in Isabelle/HOL", Journal of Automated Reasoning, 40(4), pp. 327-356. https://doi.org/10.1007/s10817-008-9097-2
- van Heijennoort, J. (1967), From Frege to Godel, Harvard University Press.
- Whitehead, A. N. and Russell, B. (1910, 1912, 1913), Principia mathematica Vol. 1 - 3, Cambridge University Press.
- Zermelo, E. (1908), "Untersuchungen uber die Grundlagen der Mengenlehre. I", Mathematische Annalen, 65, pp. 261-281. https://doi.org/10.1007/BF01449999