
논리연구 20-1(2017) pp. 97-112

Frege’s influence on the modern practice of
doing mathematics

1)

Gyesik Lee

【Abstract】We discuss Frege’s influence on the modern practice of doing
mathematical proofs. We start with explaining Frege’s notion of variables. We
also talk of the variable binding issue and show how successfully his idea on
this point has been applied in the field of doing mathematics based on a
computer software.

【Key Words】Frege, Begriffsschrift, variable binding, mechanization, formal
proofs

Received: Nov. 11, 2016. Revised: Feb. 10, 2017. Accepted: Feb. 11, 2017.

Gyesik Lee98

1. Introduction

Around the turn of the 20th century, mathematicians and
logicians were interested in a more exact investigation into the
foundation of mathematics and soon realized that ordinary
mathematical arguments can be represented in formal axiomatic
systems. One prominent figure in this research was Gottlob Frege.
His main concern was twofold:

(1) whether arithmetical judgments could be proved in a purely
logical manner, and

(2) how far one could progress in arithmetic merely by using
the laws of logic.

In Begriffsschrift (Frege, 1879), he invented a special kind of
language system, where statements can be proved as true based
only upon some general logical laws and definitions. This system
is then used later in the two volumes of Grundgesetze der
Arithmetik (Frege, 1893, 1903), where he provided and analyzed a
formal system for second order arithmetic.

Although the system in (Frege, 1893, 1903) is known to be
inconsistent, it contains all of the essential materials to provide a
fundamental basis for dealing with propositions of arithmetic
based on an axiomatic system. Indeed, it addresses all three types
of concern that can attend a mathematical proof as mentioned in
(Avigad and Harrison, 2014):

Frege’s influence on the modern practice of doing mathematics 99

(1) whether the methods it employs are appropriate to
mathematics,

(2) whether the proof itself represents a correct use of these
methods, and

(3) whether a proof delivers an appropriate understanding of the
mathematics in question.

In particular, it is Frege who first showed that a rigorous and
detailed proof could be given for each provable statement and
that the validity of each logical inference can be checked when it
is required. This is the main reason why people claim that
Frege’s work initiated an era of applying rigorous scientific
method to mathematics. Following his work, logicians and
mathematicians began to consider mathematical systems as
axiomatic ones, examples of which are Peano’s The principles of
arithmetic (Peano, 1889), Hilbert’s Grundlagen der Geometrie
(Hilbert, 1899), Whitehead and Russel’s Principia Mathematica
(Whitehead and Russell, 1910, 1912, 1913), Zermelo’s axiomatic
set theory (Zermelo, 1908), and Church’s type theory (Church,
1940). We refer to van Heijennoort's From Frege to Gödel (van
Heijenoort, 1967) for more about Frege’s influence on the
development of modern mathematics and logic.

This paper addresses an issue pointed out by Frege in
Begriffsschrift. It is about the use and role of variables in proving
meta-theories of first-order predicate logic. And we focus on
Frege’s influence on the modern practice of applying formal
proofs.

Gyesik Lee100

2. Computer-based formalization of mathematics

A formal proof is a proof which is written in an artificial
language and in which every step of the proof can be checked
according to some fixed logical rules and axioms. Note that this
is exactly what Frege had in mind when he developed his system.
Indeed, Frege said the following:

The gaplessness of the chains of inferences contrives to bring to
light each axiom, each presupposition, hypothesis, or whatever
one may want to call that on which a proof rests; and thus we
gain a basis for an assessment of the epistemological nature of
the proven law. (Ebert and Rossberg, 2013, p. VII).

The only difference between his concept and the present-day
practice is that computer software has developed sufficiently to
assist humans in writing down and proving mathematical
statements. There are various computer programs that can check
and (partially) construct proofs written in their specific
programming languages.

When mathematicians talk about a formal proof, it is generally
meant that the mentioned proof followed some level of a rigorous
scientific method acknowledged by a group of mathematicians.
The group which decides the appropriateness of given proofs
could be a group of mathematicians with some authority. Our
interest lies not in identifying the group, but in the meaning of a
rigorous scientific method in connection with the modern practice
of mathematics using a computer.

To explain the modern practice of mathematics using a

Frege’s influence on the modern practice of doing mathematics 101

computer we look at the case of Hales’ proof of the Kepler
conjecture. When in 2003 Hales submitted his proof, the referees
could not verify the correctness of the computer programs which
are used to solve 1,039 complicated inequalities. In 2004, Hales
himself announced his intention to have a formal version of his
original proof. His aim was to remove any uncertainty about the
validity of his proof by creating a formal proof that can be
verified by some automated proof checking software, that is by
some computer programs. His intention was then realized through
a project called Flyspeck on 10th August 2014, 10 years after his
announcement. In January 2015, Hales and 21 collaborators
published a paper entitled with A formal proof of the Kepler
conjecture (Hales et al., 2015). The paper describes a formal
proof of the Kepler conjecture in a combination of two proof
assistants, HOL Light (Harrison, 2009) and Isabelle (Nipkow et
al., 2002).

Proof assistants are computer software specialized in doing
mathematics on a computer. Using a proof assistant, one can set
up a meta-language system where mathematical concepts like
terms and formulas can be defined and properties like theorems
can be proved. The way how it works is very similar to what a
mathematician does in everyday mathematics. In addition, one can
use many proof assistants including HOL Light and Isabelle as a
programming language. Using this aspect, Hales could verify the
correctness of his computer programs as well as that of his
proofs.

In order to understand the mechanism of a proof assistant, it is

Gyesik Lee102

necessary to understand how mathematicians set up a theory and
how they define and prove mathematical properties in a theory.
For more details we refer however to (Geuvers, 2009) which
gives a detailed and kind explanation exactly on this point. In
this paper we instead pay our attention to Frege's influence on
the development of formalized mathematics.

3. Quantification theory and notions of variables

One of Frege’s contributions to the formalization of
mathematics is the invention of a full-fledged form of
quantification theory. The importance of this aspect is well
expressed by van Heijenoort in the introductory note on
Begriffsschrift (van Heijenoort, 1967, p. 3):

“When the slowness and the wavering of the propositional
calculus are remembered, one cannot but marvel at seeing
quantification theory suddenly coming full-grown into the world.”
Many years later (1894, p. 21) Peano still finds quantification
theory “abstruse” and prefers to deal with it by means of just a
few examples. Frege can proudly answer (1896, p. 376) that in
1879 he had already given all the laws of quantification theory;
“these laws are few in number, and I do not know why they
should be said to be abstruse”.

This comments implies that nobody had known how to deal
with quantification in a general form before Frege found out that
several laws were enough for mathematicians to go one step
further beyond the propositional logic. However, it is not our
intention to explain in detail the system with quantification

Frege’s influence on the modern practice of doing mathematics 103

introduced by Frege. We instead focus only on his understanding
and use of variables.

Logic with quantification is nowadays called predicate logic.
And in predicate logic, two sorts of variable binding are involved.
First, bound variables are used for representation of universal
quantification, as in

⊢∀ 

while free variables are used for representation of parametric
derivations, as in

  ⊢ .

It is very common to use the same set of variables for both of
them. The main issue with this approach is that bound variables
clashes sometimes with free variables, otherwise said, free
variables can be captured suddenly by bound variables. Here is an
example. Let   ∀  , where    ∃      ,
be a formula of the first-order Peano arithmetic (). Then  is
provable in  , hence the following holds:

 ⊢  

where t is an arbitrary term. But, this claim holds under the
condition that  does not occurr free in  . Otherwise, we e.g.
have for    that

Gyesik Lee104

 ⊢ ∃     

which would imply that  is not sound.
This kind of variable capture can always occur when free and

bound variables are not distinguished. For instance, the standard
definition of unrestricted substitution for the lambda calculus in
(Curry and Feys, 1958, p. 94) causes that variable capture can
occur during substitution and that many proofs involving
substitution are notoriously tedious because substitution is not
defined by a structural induction.

A typical way of addressing this issue is to work with
alpha-conversion in order to ensure that all free variables are
always distinct from the bound variables. The Barendregt Variable
Convention expresses exactly this point:

If  , ...,  occur in a certain mathematical context (e.g.
definition, proof), then in these terms all bound variables are
chosen to be different from the free variables. (Barendregt, 1981)

Note however that this requires another, this time semantic,
convention that alpha-equivalent terms can be identified. Using
these two syntactic and semantic conventions one can have very
slick informal arguments. Informal means here traditional
pen-and-paper arguments.

4. Frege's influence on mechanization of mathematics

Dealing with alpha-conversion formally has turned out to be not

Frege’s influence on the modern practice of doing mathematics 105

so feasible. It just requires huge amount of extra work. So it has
become a key issue in mechanical developments of formal
meta-theory. It concerns the representation and manipulation of
terms with variable binding.

There are two main approaches to address this issue: first-order
and higher-order approaches. In first-order approaches variables
are typically encoded using names or natural numbers, whereas
higher-order approaches such as higher-order abstract syntax
(HOAS) use the function space in the meta-language to encode
binding of the object language. Higher-order approaches are
appealing because issues like capture-avoidance and
alpha-equivalence can be handled once and for all by the
meta-logic. This is why such approaches are used in logical
frameworks such as Abella (Gacek, 2008), Hybrid (Momigliano at
al., 2008) or Twelf (Pfenning and Schürmann, 1999).

The main advantage of first-order approaches, and the reason
why they are so popular in practice, is that terms with binders
are easy to manipulate and understand; and they work well in
general-purpose theorem provers like Coq (Bertot and Castéran,
2004). Here we mention two major first-order approaches whose
idea goes back to Frege: the locally nameless style and the
locally-named style. Both styles uses different sets of variables for
bound and free variables in order to mainly avoid the variable
capture phenomenon which inevitably occurs when only one sort
of variables are used. And this idea of distinguishing two kinds
of variables was proposed and used by Frege for the first time.

In order to syntactically deal with quantification, Frege

Gyesik Lee106

distinguished between two kinds of signs when he explained the
basic building blocks for constructing syntactic entities like
propositions and proofs:

I therefore divide all signs that I use into those by which we
may understand different and those that have a completely
determinate meaning. The former are letters and they will serve
chiefly to express generality. But, no matter how indeterminate
the meaning of a letter, we must insist that throughout a given
context the letter retain the meaning once given to it. (Frege,
1879, p. 11)

Letters represent some objects like numbers or functions left
indeterminate and are nowadays called variables. And signs that
have a completely determinate meaning correspond to function
symbols in modern terminology of logic.1) He then distinguished
further between two sorts of letters:

•Latin letters a, b, c, etc: to express universal validity of
propositions, as in

(a + b) c = a c + b c.

•Old German letters a, b, c, etc: to state the generality of
judgments, as in

∀a∀b∀c[(a + b) c = a c + b c]

 1) Frege himself rejected to use the word “variable” since it was hardly
possible for him to define it properly. See the footnote by Jourdain on page
10 in (Frege, 1879).

Frege’s influence on the modern practice of doing mathematics 107

In the modern terminology, Latin letters are called free
variables while German letters are called bound variables.2) Using
two kinds of variables is also applied later in (Gentzen, 1934)
and (Prawitz, 1965).

Bound variables play the role of delimiting the scope that the
generality indicated by the letters cover. Indeed, their role is to
remember the places within their scope where “something else”
might be substituted, resulting in a less general judgment. On the
other hand, free variables syntactically play no essential role in
Frege’s work except when they are replaced by local variables in
stating the generality of judgments. General substitution, for
instance, is only performed when bound variables are instantiated,
that is, when making statements less general.

Coquand (Coquand, 1991) recognized that Frege's idea of
distinguishing between the two sorts of variables can be
practically applied in machine-checked proofs. He suggested using
Frege's idea in order to avoid the need to reason about
alpha-conversion. Following him, McKinna and Pollack in
(McKinna and Pollcak, 1993, 1999) extensively investigated the
main characteristics of using two sorts of variables in proving the
meta-theories of lambda calculus and Pure Type Systems. One of
the results of their effort is that many important properties of
typed lambda calculus can be stated and proved without referring
to alpha-conversion, such as Church-Rosser, standardization, and
subject reduction. Discussing how Frege’s idea is implemented in

 2) This is the reason why people mention Frege as the first who used two
disjoint sets of variables, see e.g. (Sato and Pollack, 2010, p. 599).

Gyesik Lee108

machine-checked proofs goes beyond the scope of this paper. We
instead give here two simple examples demonstrating the effect of
using two sorts of variables.

We first remind the reader of the fact that the formula
   ∃      from Section 3 can cause a variable
capture which would result in the inconsistency of a theory. This
kind of problem never occurs when we separate the sets of free
and bound variables. Using locally-named style and locally
namless style we explain two typical ways of variable separation.

(1) Locally-named style

Let     vary over free variables and     over
bound variables. Then the formula  can be written as

   ∃     ,

and we cannot substitute  for , simply because  is not a
well-formed term. Indeed,  is not allowed to occur unbound in a
formula or a term. We refer the reader to (McKinna and Pollack,
1993, 1999) for more detail.

(2) Locally nameless style

Let     vary over free variables. Then the formula 
can be written as

   ∃     .

Frege’s influence on the modern practice of doing mathematics 109

In the above formula,  stands for the position where a term
could be substituted when an instantiation of the existential
quantifier is performed. In this way one avoids any use of bound
variables, and instead remember the positions where instantiations
of quantifiers could happen. The numbers depends on the
complexity of the positions. For example, the formula
  ∀   can be represented in the following way:

  ∀ ∃     

One should remark that  and  are not numbers which can be
manipulated by an operation. They play the role of place holder
where instantiations of variables could happen.  is bound by ∃
and  is bound by ∀ . That is, the position of  is one-level
deeper than that of  with respect to the complexity of the
positions. Further details can be found in (Aydemir et al., 2008).

5. Conclusion

We gave a short introduction to Frege’s influence on the
modern practice of doing mathematical proofs. In particular, we
focused on the variable binding issue and showed that his idea
has turned out to be very useful in the field of doing
mathematics based on a computer software.

Gyesik Lee110

References

Avigad, J. and Harrison, J. (2014), “Formally verified
mathematics”, Communications of the ACM , 57(4), pp.
66-75.

Aydemir, B. E., Charguéraud, A., Pierce, B. C., Pollack, R., and
Weirich, S. (2008), “Enginerring formal metatheory”, ACM
SIGPLAN Notices, 43(1), pp. 3-15.

Barendregt, H. (1981), The Lambda Calculus - Its Syntax and
Semantics, North-Holland.

Bertot , Y. and Castéran, P. (2004), Interactive Theorem Proving
and Program Development - Coq'Art: The Calculus of
Inductive Constructions, Springer.

Church, A. (1940), “A formulation of the simple theory of types”,
Jounal of Symbolic Logic, 5(2), pp. 56-68.

Coquand, T. (1991), “An algorithm for testing conversion in Type
Theory”, in Huet and Plotkin (eds.), Logical Frameworks,
Cambridge University Press, pp. 255-279.

Curry, H.B. and Feys, R. (1958), Combinatory Logic Volume 1,
North Holland.

Ebert, P. and Rossberg (2013), M. Gottlog Frege: Basic Laws of
Arithmetic, Oxford University Press.

Frege, G. (1879), Begriffsschrift, eine der arithmetischen
nachgebildete Formelsprache des reinen Denkens, Verlag
von Nebert.

Frege, G. (1893, 1903), Grundgesetze der Arithmetik Volume 1
and 2, Verlag Hermann Pohle.

Gabbay, M. and Pitts, A. (2002), “A new approach to abstract
syntax with variable binding”, Formal aspects of computing,

Frege’s influence on the modern practice of doing mathematics 111

13(3-5), pp. 341-363.
Gacek, A. (2008), “The Abella interactive theorem prover (system

description)”, Lecture Notes in Computer Science, 5195, pp.
154-161.

Gentzen, G. (1934), “Untersuchungen über das logische Schließen.
I”, Mathematische Zeitschrift, 39(2), pp. 176-210.

Geuvers, H. (2009), “Proof assistants: History, ideas and future”,
Sadhana Journal, 34(1), pp. 3-25.

Gödel, K. (1958), “Über eine bisher noch nicht benützte
Erweiterung des finiten Standpunktes”, Dialectica, 12, pp.
280-287.

Hales, T. et al. (2015), “A formal proof of the Kepler
conjecture”, arXiv.org, https://arxiv.org/abs/1501.02155.

Harrison, J. (2009), “HOL Light: An overview”, Lecture Notes in
Computer Science, 5674, pp. 60-66.

Hilbert, D. (1899), Grundlagen der Geometrie, Teubner Verlag.
Huet, G. and Plotkin, G. (1991), Logical Frameworks, Cambridge

University Press.
McKinna, J. and Pollack, R. (1993), “Pure type systems

formalized”, Lecture Notes in Computer Science, 664, pp.
69-111.

McKinna, J. and Pollack, R. (1999), “Some lambda calculus and
type theory formalized”, Journal of Automated Reasoning,
23(3-4), pp. 373-409.

Momigliano, A., Martin, A. J., and Felty, A. P. (2008),
“Two-level hybred: A system for reasoning using
higher-order abstract syntax”, Electronic Notes in
Theoretical Computer Science, 196, pp. 85-93.

Nipkow, T., Paulson, L.C., and Wenzel, M. (2002), Isabelle/HOL:

Gyesik Lee112

A proof assistant for higher-order logic, Springer.
Peano, J. (1899), Arithmetices principia, nova methodo exposita,

Fratres Bocca.
Pfenning, F. and Schürmann, C. (1999), “System description:

Twelf - A meta-logical framework for deductive systems”,
Lecture Notes in Computer Science, 1632, pp. 202-206.

Prawitz, D. (1965), Natural Deduction, Almqvist & Wiksell.
Sato, M. and Pollack, R. (2010), “External and internal syntax of

the lambda-calculus”, Journal of symbolic computation,
45(5), pp. 598-616.

Urban, C. (2008), “Nominal Techniques in Isabelle/HOL”, Journal
of Automated Reasoning, 40(4), pp. 327-356.

van Heijennoort, J. (1967), From Frege to Gödel, Harvard
University Press.

Whitehead, A. N. and Russell, B. (1910, 1912, 1913), Principia
mathematica Vol. 1 - 3, Cambridge University Press.

Zermelo, E. (1908), “Untersuchungen über die Grundlagen der
Mengenlehre. I”, Mathematische Annalen, 65, pp. 261-281.

한경대학교 컴퓨터공학과

Department of Computer Science and Engineering,
Hankyong National University
gslee@hknu.ac.kr

 부 록160

현대수학의 정형화에 대한 프레게의 영향

이 계 식

컴퓨터를 이용한 수학적 증명의 정형화는 현대수학의 중요한 연

구도구로 활용되고 있다. 본 논문에서는 정형증명에 대한 프레게의

영향을 살펴본다. 이를 위해 자유변항과 구속변항을 정형증명에서

다룰 때 발생하는 문제를 설명한 후, 프레게의 Begriffsschrift에서

언급된 아이디어를 이용하여 변항을 정형적으로 다룰 수 있는 해결

책을 소개한다.

주요어: 프레게, Begriffsschrift, 변항다루기, 정형화, 정형증명

