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Frege’s influence on the modern practice of 
doing mathematics

1)

Gyesik Lee

【Abstract】We discuss Frege’s influence on the modern practice of doing 
mathematical proofs. We start with explaining Frege’s notion of variables. We 
also talk of the variable binding issue and show how successfully his idea on 
this point has been applied in the field of doing mathematics based on a 
computer software. 
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1. Introduction

Around the turn of the 20th century, mathematicians and 
logicians were interested in a more exact investigation into the 
foundation of mathematics and soon realized that ordinary 
mathematical arguments can be represented in formal axiomatic 
systems. One prominent figure in this research was Gottlob Frege. 
His main concern was twofold: 

(1) whether arithmetical judgments could be proved in a purely 
logical manner, and

(2) how far one could progress in arithmetic merely by using 
the laws of logic. 

In Begriffsschrift (Frege, 1879), he invented a special kind of 
language system, where statements can be proved as true based 
only upon some general logical laws and definitions. This system 
is then used later in the two volumes of Grundgesetze der 
Arithmetik (Frege, 1893, 1903), where he provided and analyzed a 
formal system for second order arithmetic.

Although the system in (Frege, 1893, 1903) is known to be 
inconsistent, it contains all of the essential materials to provide a 
fundamental basis for dealing with propositions of arithmetic 
based on an axiomatic system. Indeed, it addresses all three types 
of concern that can attend a mathematical proof as mentioned in 
(Avigad and Harrison, 2014): 



Frege’s influence on the modern practice of doing mathematics 99

(1) whether the methods it employs are appropriate to 
mathematics, 

(2) whether the proof itself represents a correct use of these 
methods, and

(3) whether a proof delivers an appropriate understanding of the 
mathematics in question.

In particular, it is Frege who first showed that a rigorous and 
detailed proof could be given for each provable statement and 
that the validity of each logical inference can be checked when it 
is required. This is the main reason why people claim that 
Frege’s work initiated an era of applying rigorous scientific 
method to mathematics. Following his work, logicians and 
mathematicians began to consider mathematical systems as 
axiomatic ones, examples of which are Peano’s The principles of 
arithmetic (Peano, 1889), Hilbert’s Grundlagen der Geometrie 
(Hilbert, 1899), Whitehead and Russel’s Principia Mathematica 
(Whitehead and Russell, 1910, 1912, 1913), Zermelo’s axiomatic 
set theory (Zermelo, 1908), and Church’s type theory (Church, 
1940). We refer to van Heijennoort's From Frege to Gödel (van 
Heijenoort, 1967) for more about Frege’s influence on the 
development of modern mathematics and logic.

This paper addresses an issue pointed out by Frege in 
Begriffsschrift. It is about the use and role of variables in proving 
meta-theories of first-order predicate logic. And we focus on 
Frege’s influence on the modern practice of applying formal 
proofs. 



Gyesik Lee100

2. Computer-based formalization of mathematics

A formal proof is a proof which is written in an artificial 
language and in which every step of the proof can be checked 
according to some fixed logical rules and axioms. Note that this 
is exactly what Frege had in mind when he developed his system. 
Indeed, Frege said the following:

The gaplessness of the chains of inferences contrives to bring to 
light each axiom, each presupposition, hypothesis, or whatever 
one may want to call that on which a proof rests; and thus we 
gain a basis for an assessment of the epistemological nature of 
the proven law. (Ebert and Rossberg, 2013, p. VII).

The only difference between his concept and the present-day 
practice is that computer software has developed sufficiently to 
assist humans in writing down and proving mathematical 
statements. There are various computer programs that can check 
and (partially) construct proofs written in their specific 
programming languages. 

When mathematicians talk about a formal proof, it is generally 
meant that the mentioned proof followed some level of a rigorous 
scientific method acknowledged by a group of mathematicians. 
The group which decides the appropriateness of given proofs 
could be a group of mathematicians with some authority. Our 
interest lies not in identifying the group, but in the meaning of a 
rigorous scientific method in connection with the modern practice 
of mathematics using a computer.

To explain the modern practice of mathematics using a 
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computer we look at the case of Hales’ proof of the Kepler 
conjecture. When in 2003 Hales submitted his proof, the referees 
could not verify the correctness of the computer programs which 
are used to solve 1,039 complicated inequalities. In 2004, Hales 
himself announced his intention to have a formal version of his 
original proof. His aim was to remove any uncertainty about the 
validity of his proof by creating a formal proof that can be 
verified by some automated proof checking software, that is by 
some computer programs. His intention was then realized through 
a project called Flyspeck on 10th August 2014, 10 years after his 
announcement. In January 2015, Hales and 21 collaborators 
published a paper entitled with A formal proof of the Kepler 
conjecture (Hales et al., 2015). The paper describes a formal 
proof of the Kepler conjecture in a combination of two proof 
assistants, HOL Light (Harrison, 2009) and Isabelle (Nipkow et 
al., 2002).

Proof assistants are computer software specialized in doing 
mathematics on a computer. Using a proof assistant, one can set 
up a meta-language system where mathematical concepts like 
terms and formulas can be defined and properties like theorems 
can be proved. The way how it works is very similar to what a 
mathematician does in everyday mathematics. In addition, one can 
use many proof assistants including HOL Light and Isabelle as a 
programming language. Using this aspect, Hales could verify the 
correctness of his computer programs as well as that of his 
proofs. 

In order to understand the mechanism of a proof assistant, it is 
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necessary to understand how mathematicians set up a theory and 
how they define and prove mathematical properties in a theory. 
For more details we refer however to (Geuvers, 2009) which 
gives a detailed and kind explanation exactly on this point. In 
this paper we instead pay our attention to Frege's influence on 
the development of formalized mathematics.

3. Quantification theory and notions of variables

One of Frege’s contributions to the formalization of 
mathematics is the invention of a full-fledged form of 
quantification theory. The importance of this aspect is well 
expressed by van Heijenoort in the introductory note on 
Begriffsschrift (van Heijenoort, 1967, p. 3):

“When the slowness and the wavering of the propositional 
calculus are remembered, one cannot but marvel at seeing 
quantification theory suddenly coming full-grown into the world.” 
Many years later (1894, p. 21) Peano still finds quantification 
theory “abstruse” and prefers to deal with it by means of just a 
few examples. Frege can proudly answer (1896, p. 376) that in 
1879 he had already given all the laws of quantification theory; 
“these laws are few in number, and I do not know why they 
should be said to be abstruse”.

This comments implies that nobody had known how to deal 
with quantification in a general form before Frege found out that 
several laws were enough for mathematicians to go one step 
further beyond the propositional logic. However, it is not our 
intention to explain in detail the system with quantification 
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introduced by Frege. We instead focus only on his understanding 
and use of variables. 

Logic with quantification is nowadays called predicate logic. 
And in predicate logic, two sorts of variable binding are involved. 
First, bound variables are used for representation of universal 
quantification, as in 

⊢∀ 

while free variables are used for representation of parametric 
derivations, as in

  ⊢ .

It is very common to use the same set of variables for both of 
them. The main issue with this approach is that bound variables 
clashes sometimes with free variables, otherwise said, free 
variables can be captured suddenly by bound variables. Here is an 
example. Let   ∀  , where    ∃      , 
be a formula of the first-order Peano arithmetic ( ). Then   is 
provable in  , hence the following holds:

 ⊢  

where t is an arbitrary term. But, this claim holds under the 
condition that   does not occurr free in  . Otherwise, we e.g. 
have for     that
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 ⊢ ∃     

which would imply that   is not sound. 
This kind of variable capture can always occur when free and 

bound variables are not distinguished. For instance, the standard 
definition of unrestricted substitution for the lambda calculus in 
(Curry and Feys, 1958, p. 94) causes that variable capture can 
occur during substitution and that many proofs involving 
substitution are notoriously tedious because substitution is not 
defined by a structural induction. 

A typical way of addressing this issue is to work with 
alpha-conversion in order to ensure that all free variables are 
always distinct from the bound variables. The Barendregt Variable 
Convention expresses exactly this point:

If  , ...,   occur in a certain mathematical context (e.g. 
definition, proof), then in these terms all bound variables are 
chosen to be different from the free variables. (Barendregt, 1981)

Note however that this requires another, this time semantic, 
convention that alpha-equivalent terms can be identified. Using 
these two syntactic and semantic conventions one can have very 
slick informal arguments. Informal means here traditional 
pen-and-paper arguments.

4. Frege's influence on mechanization of mathematics

Dealing with alpha-conversion formally has turned out to be not 
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so feasible. It just requires huge amount of extra work. So it has 
become a key issue in mechanical developments of formal 
meta-theory. It concerns the representation and manipulation of 
terms with variable binding. 

There are two main approaches to address this issue: first-order 
and higher-order approaches. In first-order approaches variables 
are typically encoded using names or natural numbers, whereas 
higher-order approaches such as higher-order abstract syntax 
(HOAS) use the function space in the meta-language to encode 
binding of the object language. Higher-order approaches are 
appealing because issues like capture-avoidance and 
alpha-equivalence can be handled once and for all by the 
meta-logic. This is why such approaches are used in logical 
frameworks such as Abella (Gacek, 2008), Hybrid (Momigliano at 
al., 2008) or Twelf (Pfenning and Schürmann, 1999).

The main advantage of first-order approaches, and the reason 
why they are so popular in practice, is that terms with binders 
are easy to manipulate and understand; and they work well in 
general-purpose theorem provers like Coq (Bertot and Castéran, 
2004). Here we mention two major first-order approaches whose 
idea goes back to Frege: the locally nameless style and the 
locally-named style. Both styles uses different sets of variables for 
bound and free variables in order to mainly avoid the variable 
capture phenomenon which inevitably occurs when only one sort 
of variables are used. And this idea of distinguishing two kinds 
of variables was proposed and used by Frege for the first time. 

In order to syntactically deal with quantification, Frege 
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distinguished between two kinds of signs when he explained the 
basic building blocks for constructing syntactic entities like 
propositions and proofs:

I therefore divide all signs that I use into those by which we 
may understand different and those that have a completely 
determinate meaning. The former are letters and they will serve 
chiefly to express generality. But, no matter how indeterminate 
the meaning of a letter, we must insist that throughout a given 
context the letter retain the meaning once given to it. (Frege, 
1879, p. 11)

Letters represent some objects like numbers or functions left 
indeterminate and are nowadays called variables. And signs that 
have a completely determinate meaning correspond to function 
symbols in modern terminology of logic.1) He then distinguished 
further between two sorts of letters:

•Latin letters a, b, c, etc: to express universal validity of 
propositions, as in

(a + b) c = a c + b c.

•Old German letters a, b, c, etc: to state the generality of 
judgments, as in

∀a∀b∀c[(a + b) c = a c + b c]

 1) Frege himself rejected to use the word “variable” since it was hardly 
possible for him to define it properly. See the footnote by Jourdain on page 
10 in (Frege, 1879).
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In the modern terminology, Latin letters are called free 
variables while German letters are called bound variables.2) Using 
two kinds of variables is also applied later in (Gentzen, 1934) 
and (Prawitz, 1965). 

Bound variables play the role of delimiting the scope that the 
generality indicated by the letters cover. Indeed, their role is to 
remember the places within their scope where “something else” 
might be substituted, resulting in a less general judgment. On the 
other hand, free variables syntactically play no essential role in 
Frege’s work except when they are replaced by local variables in 
stating the generality of judgments. General substitution, for 
instance, is only performed when bound variables are instantiated, 
that is, when making statements less general.

Coquand (Coquand, 1991) recognized that Frege's idea of 
distinguishing between the two sorts of variables can be 
practically applied in machine-checked proofs. He suggested using 
Frege's idea in order to avoid the need to reason about 
alpha-conversion. Following him, McKinna and Pollack in 
(McKinna and Pollcak, 1993, 1999) extensively investigated the 
main characteristics of using two sorts of variables in proving the 
meta-theories of lambda calculus and Pure Type Systems. One of 
the results of their effort is that many important properties of 
typed lambda calculus can be stated and proved without referring 
to alpha-conversion, such as Church-Rosser, standardization, and 
subject reduction. Discussing how Frege’s idea is implemented in 

 2) This is the reason why people mention Frege as the first who used two 
disjoint sets of variables, see e.g. (Sato and Pollack, 2010, p. 599).
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machine-checked proofs goes beyond the scope of this paper. We 
instead give here two simple examples demonstrating the effect of 
using two sorts of variables. 

We first remind the reader of the fact that the formula 
   ∃       from Section 3 can cause a variable 
capture which would result in the inconsistency of a theory. This 
kind of problem never occurs when we separate the sets of free 
and bound variables. Using locally-named style and locally 
namless style we explain two typical ways of variable separation.

(1) Locally-named style

Let      vary over free variables and      over 
bound variables. Then the formula   can be written as 

   ∃     ,

and we cannot substitute   for , simply because   is not a 
well-formed term. Indeed,   is not allowed to occur unbound in a 
formula or a term. We refer the reader to (McKinna and Pollack, 
1993, 1999) for more detail.

(2) Locally nameless style

Let      vary over free variables. Then the formula   
can be written as 

   ∃     .
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In the above formula,   stands for the position where a term 
could be substituted when an instantiation of the existential 
quantifier is performed. In this way one avoids any use of bound 
variables, and instead remember the positions where instantiations 
of quantifiers could happen. The numbers depends on the 
complexity of the positions. For example, the formula 
  ∀   can be represented in the following way:

  ∀ ∃     

One should remark that   and   are not numbers which can be 
manipulated by an operation. They play the role of place holder 
where instantiations of variables could happen.   is bound by ∃  
and   is bound by ∀ . That is, the position of   is one-level 
deeper than that of   with respect to the complexity of the 
positions. Further details can be found in (Aydemir et al., 2008).

5. Conclusion

We gave a short introduction to Frege’s influence on the 
modern practice of doing mathematical proofs. In particular, we 
focused on the variable binding issue and showed that his idea 
has turned out to be very useful in the field of doing 
mathematics based on a computer software. 
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     부 록160

현대수학의 정형화에 대한 프레게의 영향

이 계 식

컴퓨터를 이용한 수학적 증명의 정형화는 현대수학의 중요한 연

구도구로 활용되고 있다. 본 논문에서는 정형증명에 대한 프레게의 

영향을 살펴본다. 이를 위해 자유변항과 구속변항을 정형증명에서 

다룰 때 발생하는 문제를 설명한 후, 프레게의 Begriffsschrift에서 

언급된 아이디어를 이용하여 변항을 정형적으로 다룰 수 있는 해결

책을 소개한다.

주요어: 프레게, Begriffsschrift, 변항다루기, 정형화, 정형증명




