DOI QR코드

DOI QR Code

Growth and Fresh Bulb Weight Model in Harvest Time of Southern Type Garlic Var. 'Namdo' based on Temperature

온도에 따른 난지형 마늘 '남도'의 생육과 수확기 구생체중 모델 개발

  • Wi, Seung Hwan (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Moon, Kyung Hwan (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Song, Eun Young (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Son, In Chang (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Oh, Soon Ja (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Cho, Young Yeol (Major of Horticultural Science Jeju National University)
  • 위승환 (국립원예특작과학원 온난화대응농업연구소) ;
  • 문경환 (국립원예특작과학원 온난화대응농업연구소) ;
  • 송은영 (국립원예특작과학원 온난화대응농업연구소) ;
  • 손인창 (국립원예특작과학원 온난화대응농업연구소) ;
  • 오순자 (국립원예특작과학원 온난화대응농업연구소) ;
  • 조영열 (제주대학교 원예환경전공)
  • Received : 2016.09.06
  • Accepted : 2017.01.18
  • Published : 2017.01.31

Abstract

This study was conducted to investigate optimal temperature of garlic and develop bulb weight model in harvest time. Day and night temperature in chambers was set to $11/7^{\circ}C$, $14/10^{\circ}C$, $17/12^{\circ}C$, $20/15^{\circ}C$, $23/18^{\circ}C$, $28/23^{\circ}C$(16/8h). Bulb fresh and dry weight was heaviest on $20/15^{\circ}C$. In $11/7^{\circ}C$ and $14/10^{\circ}C$, leaf number and total leaf area increased slowly. But in the harvest, leaf number and total leaf area were not significant, except $28/23^{\circ}C$. Models were developed with fresh bulb weight. As a result of analyzing the model, $18{\sim}20^{\circ}C$ certified optimal mean temperature. And the growing degree day base temperature estimated $7.1^{\circ}C$, upper temperature threshold estimated $31.7^{\circ}C$. To verify the model, mean temperature on temperature gradient tunnel applied to the growth rate model. Lineal function model, quadric model, and logistic distribution model showed 79.0~95.0%, 77.2~92.3% and 85.0~95.8% accuracy, respectively. Logistic distribution model has the highest accuracy and good for explaining moderate temperature, growing degree day base temperature and upper temperature threshold.

본 연구는 난지형 마늘 '남도'의 적정 생육 온도 구명과 일 평균온도를 이용한 구중 예측을 위하여 수행되었다. 온도처리는 주간 16시간 야간 8시간 처리로 $11/7^{\circ}C$, $14/10^{\circ}C$, $17/12^{\circ}C$, $20/15^{\circ}C$, $23/18^{\circ}C$, $28/23^{\circ}C$ 로 설정하였다. 구의 생체중과 건물중은 $20/15^{\circ}C$ 처리구에서 가장 높았으며 고온이나 저온으로 갈수록 감소하였다. 엽수와 총엽면적은 저온인 처리구가 고온처리구보다 생장이 느렸으나, 최종적으로는 최고온도인 $28/23^{\circ}C$을 제외하고 유사한 경향을 보였다. 구의 생체중으로 6종의 함수를 개발하였으며 이를 통해 '남도' 마늘의 적정 생육온도와 한계온도, 온도에 따른 구생장량을 확인할 수 있었다. 분석 결과 '남도' 마늘의 적정 생육온도는 $18{\sim}20^{\circ}C$이며 GDD 기본온도와 한계온도는 $7.1^{\circ}C$$31.7^{\circ}C$로 추정할 수 있었다. 일 평균온도를 이용한 수확기 기준 구생체중 모델을 검증하기 위하여 온도구배터널의 기상자료를 이용하여 예측하였다. 선형함수를 이용한 예측은 79.0~95.0%, 2차 함수를 이용한 예측은 77.2~92.3%, 로지스틱분포 함수를 이용한 예측은 80.0~95.8% 예측도를 보였다. 이중 가장 예측력이 좋은 함수는 로지스틱분포함수이며 생육적정온도와 한계온도도 잘 표현하였다.

Keywords

References

  1. Cutforth, H.W. and C.F. Shaykewich. 1990. A temperature response function for corn development. Agricultural and Forest Meteorology 50(3): 159-171. https://doi.org/10.1016/0168-1923(90)90051-7
  2. El-Zohiri, S.S.M. and A.A. Farag. 2014. Relation planting date, cultivars and growing degree-days on growth, yield and quality of garlic. Middle East Journal of Agriculture Research 3(4): 1169-1183.
  3. Hardegree, S.P. 2006. Predicting germination response to temperature. I. Cardinal-temperature models and subpopulationspecific regression. Annals of Botany 97:1115-1125. https://doi.org/10.1093/aob/mcl071
  4. Hwang, J.M. and G.S. Tae. 2000. Changes of microclimates and garlic growth in oudoor by mulching and tunnel treatments. Journal of the Korean society for Horticultural Science Horticulture, Environment and Biotechnology 41(1):27-30. (In Korea)
  5. Lee, C.K., B.W. Lee, Y.H. Yoon, and J.C. Shin. 2001. Temperature response and prediction model of leaf appearance rate in rice. Korean Journal of Crop Science 46(3): 202-208. (In Korea)
  6. Lee, J.M. 2003. Special vegitable horticulture. 1th ed. Hyang moon sa, Seoul, Korea. p. 421. (In Korea)
  7. Lee, S.G., T.C. Seo, Y.A. Jang, J.G. Lee, C. W. Nam, C. S. Choi, K.H. Yeo, and Y.C. Um. 2012. Prediction of chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. Journal of Bio-Environment Control 21:271-275. (In Korea)
  8. McMaster, G.S., W.W. Wilhelm. 1997. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87: 291-300. https://doi.org/10.1016/S0168-1923(97)00027-0
  9. Miller, P., W. Lanier, and S. Brandt. 2001. Using growing degree days to predict plant stanges. Ag/Extension Communications Coordinator, Communication Services, Montana State University-Bozeman, MO 2001.
  10. Roche, C.T., D.C. Thill, and B. Shafil. 1997. Estimation of base and optimum temperatures for seed germination in common crupina (Crupina vulgaris). Weed Science 45:529-533.
  11. Swan J. B., E.C. Schneider, J.F. Moncrief, W. H. Paulson, and A. E. Peterson. 1987. Estimating corn growth, yield, and grain moisture from air growing degree days and residue cover. Agronomy J. 79: 53-60. https://doi.org/10.2134/agronj1987.00021962007900010012x
  12. Seefeldt, S.S., K.K. Kidwell, and J.E. Waller. 2002. Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the US Pacific Northwest. Field Crops Research 75:47-52. https://doi.org/10.1016/S0378-4290(02)00007-2
  13. Shaykewich C.F. 1995. An appraisal of cereal crop phenology modelling. Canadian Journal of Plant Science 75(5): 329-341. https://doi.org/10.4141/cjps95-057
  14. Yan, W. and L.A. Hunt. 1999. An equation for modeling the temperature response of plants using only the cardinal temperature. Annals of Botany 84:607-614. https://doi.org/10.1006/anbo.1999.0955
  15. Yim, J.H., S.B. Kim, E.K. Lee, J.H. Jin, K.P. You, and D.G. Choi. 2012. Effect of Artificial Wind Time on Photosynthesis and Leaf Characteristics of Growing Period in Apple and Pear. Journal of the Korean society for Horticultural Science Abstracts 30:128-128
  16. Yin, X., M.J. Kropff, G. McLaren, and R.M. Visperas. 1995. A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology 77:1-16. https://doi.org/10.1016/0168-1923(95)02236-Q