DOI QR코드

DOI QR Code

Humidity Sensors Based on Titanium Oxide/Polyvinyl Alcohol Composite Nanofibers via Electrospinning

전기방사를 이용한 titanium oxide/polyvinyl alcohol 습도센서 제조 및 성능에 관한 연구

  • Jeong, Yu Kyung (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Choi, Sejin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
  • 정유경 (부산대학교 유기소재시스템공학과) ;
  • 최세진 (부산대학교 유기소재시스템공학과) ;
  • 김한성 (부산대학교 유기소재시스템공학과)
  • Received : 2016.11.11
  • Accepted : 2016.12.20
  • Published : 2017.02.28

Abstract

In this study, titanium oxide($TiO_2$)/polyvinyl alcohol(PVA) electrospun composite nanofibers were used as a humidity sensing layer. The electrospinning behavior was observed to investigate the influence of different concentrations of $TiO_2$. In order to secure the structural stability of the sensing layer, which was dissolved under conditions of high humidity, the PVA-based sensing layer was crystallized at $180^{\circ}C$. The humidity sensing properties, including the impedance versus relative humidity and response-recovery time, were found to improve because of the structural advantage of the fiber-shaped sensing layer and the hydrophillic inorganic particles. Furthermore, The humidity sensing mechanism could be elucidated via the complex impedance plots and corresponding equivalent circuit.

Keywords

References

  1. B. Cramariuc, R. Cramariuc, R. Scarlet, L. R. Manea, I. G. Lupu, and O. Cramariuc, "Fiber Diameter in Electrospinning Process", J. Electrostat., 2013, 71, 189-198. https://doi.org/10.1016/j.elstat.2012.12.018
  2. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, "Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning", J. Appl. Phys., 2000, 87, 4531-4547. https://doi.org/10.1063/1.373532
  3. A. L. Yarin, S. Koombhongse, and D. H. Reneker, "Bending Instability in Electrospinning of Nanofibers", J. Appl. Phys., 2001, 89, 3018-3026. https://doi.org/10.1063/1.1333035
  4. S. J. Choi, C. S. Kong, D. H. Han, and H. S. Kim, "Online Measurement of Electrospinning Jet Velocity of Polyvinyl Alcohol", Int. Polym. Proc., 2016, 31, 285-291. https://doi.org/10.3139/217.3123
  5. J. Ding, Z. Lu, R. Wang, G. Shen, and L. Xiao, "Piezoelectric Immunosensor with Gold Nanoparticles Enhanced Competitive Immunoreaction Technique for 2,4-dichlorophenoxyacetic Acid Quantification", Sensor. Actuat. B-Chem., 2014, 193, 568-573. https://doi.org/10.1016/j.snb.2013.11.079
  6. Y. Li, C. Deng, and M. Yang, "A Novel Surface Acoustic Waveimpedance Humidity Sensor Based on the Composite of Polyaniline and Poly(vinyl alcohol) with a Capability of Detecting Low Humidity", Sensor. Actuat. B-Chem., 2012, 165, 7-12. https://doi.org/10.1016/j.snb.2011.12.037
  7. M. V. Kulkarni, S. K. Apte, S. D. Naik, J. D. Ambekar, and B. B. Kale, "Ink-jet Printed Conducting Polyaniline Based Flexible Humidity Sensor", Sensor. Actuat. B-Chem., 2013, 178, 140-143. https://doi.org/10.1016/j.snb.2012.12.046
  8. J. Wang, R. K. Ghosh, and S. K. Das, "A Survey on Sensor Localization", J. Contr. Theor. Appl., 2010, 8, 2-11. https://doi.org/10.1007/s11768-010-9187-7
  9. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, "Graphene Based Electrochemical Sensors and Biosensors: A Review", Electroanal., 2010, 22, 1027-1036. https://doi.org/10.1002/elan.200900571
  10. H. Guohua, M. Shanshan, C. Qingqing, and C. Xing, "Sweet and Bitter Tastant Discrimination from Complex Chemical-mixtures Using Taste Cell-based Sensor", Sensor. Actuat. BChem., 2014, 192, 361-368. https://doi.org/10.1016/j.snb.2013.10.119
  11. A. I. Buvailo, Y. Xing, J. Hines, N. Dollahon, and E. Borguet, "$TiO_2$/LiCl-Based Nanostructured Thin Film for Humidity Sensor Applications", ACS Appl. Mater. Inter., 2011, 3, 528-533. https://doi.org/10.1021/am1011035
  12. Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, "Humidity Sensing Properties of $BaTiO_3$ Nanofiber Prepared via Electrospinning", Sensor. Actuat. B-Chem., 2010, 146, 98-102. https://doi.org/10.1016/j.snb.2010.02.030
  13. P. M. Faia and C. S. Furtado, "Effect of Composition on Electrical Response to Humidity of $TiO_2$:ZnO Sensors Investigated by Impedance Spectroscopy", Sensor. Actuat. B-Chem., 2013, 181, 720-729. https://doi.org/10.1016/j.snb.2013.02.027
  14. W. Geng, Q. Yuan, X. Jiang, J. Tu, L. Duan, J. Gu, and Q. Zhang, "Humidity Sensing Mechanism of Mesoporous MgO/KCl-$SiO_2$ Composites Analyzed by Complex Impedance Spectra and Bode Diagrams", Sensor. Actuat. B-Chem., 2012, 174, 513-520. https://doi.org/10.1016/j.snb.2012.08.057
  15. P. G. Su, W. C. Li, J. Y. Tseng, and C. J. Ho, "Fully Transparent and Flexible Humidity Sensors Fabricated by Layer-by-layer Self-assembly of Thin Film of Poly(2-acrylamido-2-methylpropane sulfonate) and Its Salt Complex", Sensor. Actuat. B-Chem., 2011, 153, 29-36. https://doi.org/10.1016/j.snb.2010.09.074
  16. P. G. Su and C. C. Shiu, "Electrical and Sensing Properties of a Flexible Humidity Sensor Made of Polyamidoamine Dendrimer-Au Nanoparticles", Sensor. Actuat. B-Chem., 2012, 165, 151-156. https://doi.org/10.1016/j.snb.2012.02.032
  17. J. H. Anderson and G. A. Parks, "Electrical Conductivity of Silica Gel in the Presence of Adsorbed Water", J. Phys. Chem., 1968, 72, 3662-3668. https://doi.org/10.1021/j100856a051
  18. F. M. Ernsberger, "The NonconformistIon", J. Am. Ceram. Soc., 1983, 66, 747-750. https://doi.org/10.1111/j.1151-2916.1983.tb10555.x
  19. S. Liang, X. He, F. Wang, W. Geng, X. Fu, J. Ren, and X. Jiang, "Highly Sensitive Humidity Sensors Based on LiCl-Pebax 2533 Composite Nanofibers via Electrospinning", Sensor. Actuat. B-Chem., 2015, 208, 363-368. https://doi.org/10.1016/j.snb.2014.11.035

Cited by

  1. Fabrication and Changes in Physical and Functional Properties after Repeated Laundering of PU Nanocomposite Laminates Loaded with Electrospun Juniperus Chinensis Extracts vol.19, pp.11, 2018, https://doi.org/10.1007/s12221-018-8298-5
  2. Electroencephalogram and Psychological Response to Fragrance and Color of Citrus unshiu Scent-Infused Fabrics vol.19, pp.7, 2018, https://doi.org/10.1007/s12221-018-8228-6