References
- Ahn, J., Kim, C., Kim, H., Hwang, K., and Hwang, I. 2016, Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: A field study, Water Res., 107, 57-65. https://doi.org/10.1016/j.watres.2016.10.037
- Al-Shamsi, M.A. and Thomson, N.R. 2013, Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron, Ind. Eng. Chem. Res., 52(38), 13564-13571. https://doi.org/10.1021/ie400387p
- Boukari, S.O., Pellizzari, F., and Leitner, N.K.V. 2011, Influence of persulfate ions on the removal of phenol in aqueous solution using electron beam irradiation, J. Hazard. Mater., 185(2), 844-851. https://doi.org/10.1016/j.jhazmat.2010.09.097
- Budaev, S., Batoeva, A., and Tsybikova, B., 2015, Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion, Miner. Eng., 81, 88-95. https://doi.org/10.1016/j.mineng.2015.07.010
- Buxton, G.V., Barlow, S., Mcgowan, S., Salmon, G.A., and Williams, J.E., 1999, The reaction of the SO 3-Radical with Fe II in acidic aqueous Solution-A pulse radiolysis study, Phys. Chem. Chem. Phys., 1(13), 3111-3115. https://doi.org/10.1039/a901735f
- Diao, Z.H., Xu, X.R., Jiang, D., Kong, L.J., Sun, Y.X., Hu, Y.X., Hao, Q.W., and Chen, H., 2016, Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr (VI) and phenol from aqueous solutions, Chem. Eng. J., 302, 213-222. https://doi.org/10.1016/j.cej.2016.05.062
- Eberson, L., 1982, Electron-transfer reactions in organic chemistry, Adv. Phys. Org. Chem., 18, 79-185.
- Gomes, H.I., Dias-Ferreira, C., and Ribeiro, A.B., 2012, Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies, Chemosphere, 87(10), 1077-1090. https://doi.org/10.1016/j.chemosphere.2012.02.037
- Huang, K., Zhao, Z., Hoag, G.E., Dahmani, A., and Block, P.A., 2005, Degradation of volatile organic compounds with thermally activated persulfate oxidation, Chemosphere, 61(4), 551-560. https://doi.org/10.1016/j.chemosphere.2005.02.032
- Li, H., Wan, J., Ma, Y., Wang, Y., and Huang, M., 2014a, Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7, Chem. Eng. J., 237, 487-496. https://doi.org/10.1016/j.cej.2013.10.035
- Li, J., He, L., Lu, H., and Fan, X. 2014b, Stochastic goal programming based groundwater remediation management under human-health-risk uncertainty, J. Hazard. Mater., 279, 257-267. https://doi.org/10.1016/j.jhazmat.2014.06.082
- Li, R., Jin, X., Megharaj, M., Naidu, R., and Chen, Z. 2015, Heterogeneous fenton oxidation of 2, 4-Dichlorophenol using iron-based nanoparticles and persulfate system, Chem. Eng. J., 264, 587-594. https://doi.org/10.1016/j.cej.2014.11.128
- Magazinovic, R.S., Nicholson, B.C., Mulcahy, D.E., and Davey, D.E., 2004, Bromide levels in natural waters: Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment, Chemosphere, 57(4), 329-335. https://doi.org/10.1016/j.chemosphere.2004.04.056
- Masciopinto, C., 2006, Simulation of coastal groundwater remediation: The case of nard fractured aquifer in southern Italy, Environ. Model. Softw., 21(1), 85-97. https://doi.org/10.1016/j.envsoft.2004.09.028
- Neta, P., Madhavan, V., Zemel, H., and Fessenden, R.W., 1977, Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds, J. Amer. Chem. Soc., 99(1), 163-164. https://doi.org/10.1021/ja00443a030
-
Oh, S., Kim, H., Park, J., Park, H., and Yoon, C., 2009, Oxidation of polyvinyl alcohol by persulfate activated with heat,
$Fe^{2+}$ , and zero-valent iron, J. Hazard. Mater., 168(1), 346-351. https://doi.org/10.1016/j.jhazmat.2009.02.065 - Olmez-Hanci, T. and Arslan-Alaton, I., 2013, Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol, Chem. Eng. J., 224, 10-16. https://doi.org/10.1016/j.cej.2012.11.007
- Pardo, F., Santos, A., and Romero, A., 2016, Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: a column study, Sci. Total Environ., 566, 480-488.
- Peluffo, M., Pardo, F., Santos, A., and Romero, A., 2016, Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil, Sci. Total Environ., 563, 649-656.
- Pennington, D.E. and Haim, A., 1968, Stoichiometry and mechanism of the chromium (II)-Peroxydisulfate reaction, J. Amer. Chem. Soc., 90(14), 3700-3704. https://doi.org/10.1021/ja01016a017
- Ren, L., He, L., Lu, H., and Li, J., 2017, Rough-interval-based multicriteria decision analysis for remediation of 1, 1-Dichloroethane contaminated groundwater, Chemosphere, 168, 244-253. https://doi.org/10.1016/j.chemosphere.2016.10.042
- Siegrist, R.L., Crimi, M., and Simpkin, T.J., 2011, In Situ Chemical Oxidation for Groundwater Remediation, Springer Science & Business Media, Berlin, Germany, 678 p.
- Tsitonaki, A., Petri, B., Crimi, M., Mosbaek, H., Siegrist, R.L., and Bjerg, P.L., 2010, In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review, Crit. Rev. Environ. Sci. Technol., 40(1), 55-91. https://doi.org/10.1080/10643380802039303