DOI QR코드

DOI QR Code

고체 추진제 장시간 물성거동 반응 연구

A Study of Thermo-rheological Behaviour from Long Term Responses of Solid Composite Propellant

  • 투고 : 2015.12.15
  • 심사 : 2016.12.19
  • 발행 : 2017.02.01

초록

고체 추진기관이 노즐마개에 의해 외기와의 교환이 완벽히 차단된다면, 구조적 안정성은 제작초기 조건인 내부조성간의 잔류반응(Post Cure, Migration etc.), 그리고 자유공간 내의 산소(또는 산화방지제)와 습기(제습제)와의 반응에 종속된다. 이로부터 발생하는 혼합형 고체추진제의 기계적 특성은 매우 복잡하며, 추진기관은 발사직전까지 일교차/년교차의 끊임없는 열하중을 받게 된다. 본 연구에서는 고체 추진기관의 제조공정인 성형오븐에서 출고 후 저장안정화까지의 거동을 고체추진제의 열유변학적 단순특성을 적용하여 신속하게 산출할 수 있는 방법을 제시하였다. 이를 위해 온도제어 가능한 Endurance Test 장치를 고안 제작하였으며, 추가적으로 점진적 응력과 변형율 증가에 따른 비선형 특성도 검토한다.

Structural integrity of solid rocket depends on the residual reactions between constituents of its composition(post cure, migration etc.), the oxygen(or anti-oxydent) in the free volume and humidity (desiccant) under the perfect sealed condition. Mechanical Properties of composite solid propellant arising from those factors are very complex. Moreover the propulsion are faced with thermal loads from diurnal & seasonal cycle till firing. In this study, the fast evaluation method of long term mechanical properties is suggested based on Thermo-Rheological Simplicity from curing oven to cool-down stage in view point of thermal stabilization. For this subject, endurance tester having temperature control capability are devised. From the results from incremental load and strain, non-linear characteristics are discussed.

키워드

참고문헌

  1. Ha, J.S., Kim, J.H., Jung, G.D., Park, J.B., Yang, H.Y. and Seo, B.H., "Farcture Toughness Evaluation of a Solid Propellant Considering Viscoelasticity," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 2, pp. 57-62, 2013. https://doi.org/10.6108/KSPE.2013.17.2.057
  2. Junga, G.D., Younb, S.K. and Kimb, B.K., "A three-dimensional nonlinear viscoelastic constitutive model of solid propellant," International Journal of Solids and Structures, Vol. 37, Issue 34, Aug. 2000.
  3. Brostow, W., D'Souza, N.A., Kubat, J. and Maksimov, R., "Creep and stress relaxation in a longitudinal polymer liquid crystal: Prediction of the temperature shift factor," Journal of Chemical Physics, Vol. 110, No. 19, pp. 9706-9712, 1999. https://doi.org/10.1063/1.478935
  4. Douglass, H.W., Collins, J.H., Noel, J.S., Keller, R.B. and Webb, L.D., "Solid propellant grain structural integrity analysis," NASA Space Vehicle Design Criteria, NASA-SP 8073, Jun. 1973.
  5. Edmund Fitzgerald, J., Handbook for the Engineering Structural Analysis of Solid Propellant, CPIA, Laurel, M.D., U.S.A., 1971.