DOI QR코드

DOI QR Code

Development of a marker system to discern the flowering type in Brassica rapa crops

배추 속 작물의 개화형 판별 마커 시스템 개발

  • Kim, Jin A (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jung Sun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Joon Ki (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Yeon-Hee (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Soo In (National Academy of Agricultural Science, Rural Development Administration) ;
  • Jeong, Mi-Jeong (National Academy of Agricultural Science, Rural Development Administration)
  • 김진아 (농촌진흥청 국립농업과학원 생물소재공학과) ;
  • 김정선 (농촌진흥청 국립농업과학원 생물소재공학과) ;
  • 홍준기 (농촌진흥청 국립농업과학원 생물소재공학과) ;
  • 이연희 (농촌진흥청 국립농업과학원 생물소재공학과) ;
  • 이수인 (농촌진흥청 국립농업과학원 생물소재공학과) ;
  • 정미정 (농촌진흥청 국립농업과학원 생물소재공학과)
  • Received : 2017.09.18
  • Accepted : 2017.10.26
  • Published : 2017.12.31

Abstract

Flowering is one of the most important development traits related to the production of Brassica rapa crops. After planting, a sudden low temperature triggers premature flowering, which leads to a reduction in the yield and quality of harvested production. Therefore, understanding the mechanism of flowering control is important in the agricultural productivity for preventing Brassica rapa crops. Vernalization is generally known as the main factor of flowering in the Brassica plant. However, in the subspecies of Brassica rapa, some accession such as Yellow sarson and Komatsuna display the flowering phenotype without vernalization. Circadian genes, which diurnally regulate plant physiology, have a role for photoperiodic flowering but are related to the regulation of the vernalizarion mechanism. In this report, the 22 B. rapa accession were divided into two groups, vernalization and non-vernalization, and the sequenced circadian gene, BrPRR1s. Among them, the BrPRR1b gene was found to have deletion regions, which could classify the two groups. The PCR primer was designed to amplify a short band of 422bp in the vernalization type and a long band of 451bp in the non-vernalization type. This primer set was applied to distinguish the flowering types in the 43 B. rapa accession and 4 Brassica genus crop, Broccoli, cabbage, mustard, and rape. The PCR analysis results and flowering time information of each crop demonstrated that the primer set can be used as marker to discern the flowering type in Brassica crops. This marker system can be applied to the B. rapa breeding when selecting the flowering character of new progenies or introducing varieties at an early stage. In addition, these results displayed that the circadian clock genes can be a good strategy for the flowering control of B. rapa crops.

개화는 배추종 작물의 생산성과 연관된 중요 발달 특성 중 하나이다. 이식 후, 갑작스러운 저온에 노출되어 때이른 개화를 하게 되면 수확되는 생산물의 양과 질이 떨어지게 된다. 따라서, 개화조절 메커니즘을 이해하는 것은 배추 종 작물의 농업적 생산성을 향상시키는데 도움을 줄 것이다. 춘화는 배추과 작물에서 일반적으로 알려져 있는 개화를 유도하는 중요한 요소이다. 그러나 옐로우 사순이나 코마수나와 같은 배추 아종은 춘화처리 없이도 개화한다. 1일을 주기로 하여 생물의 생리기작을 조절하는 생체시계 유전자는 일장감응형의 개화 조절에 중요한 역할을 하지만 춘화처리를 통해 개화를 유도하는 기작과도 연관되어 있다. 본 논문에서는 22개의 배추 아종을 개화에 춘화처리가 필요한 춘화형과 춘화처리 없이도 개화하는 비춘화형으로 나누어 보존된 생체시계 유전자, BrPRR1 군의 염기서열 분석을 수행하였다. 그 중 BrPRR1b 유전자의 결손 영역으로 춘화형과 비춘화형 두 그룹을 구분할 수 있었다. 이 서열변이를 증폭할 수 있는 PCR 프라이머를 디자인하여 비춘화형 배추 아종에서는 451 bp의 긴밴드를, 춘화형 배추에서는 422 bp의 작은 크기의 밴드를 증폭할 수 있었다. 이 프라이머 세트는 43개 배추 아종과 4개의 배추속 작물, 브로콜리, 양배추, 갓, 그리고 유채의 개화형을 구분하는데 적용되었다. 각 작물의 PCR 결과와 개화시기에 대한 정보를 통하여 프라이머 세트가 개화형을 판별할 수 있는 마커로 이용될 수 있음이 확인되었다. 이 마커시스템은 배추 종 작물 육종에 유묘 단계에서 개화형을 판단하는데 이용할 수 을 것이다. 또한 이 결과들은 생체시계 유전자가 배추 종 작물의 개화를 조절하는 좋은 전략이 될 수 있음을 보여주었다.

Keywords

References

  1. Alexandre CM, Hennig L (2008) FLC or not FLC: the other side of vernalization. J Exp Bot 59:1127-1135 https://doi.org/10.1093/jxb/ern070
  2. Bieniawska Z, Espinoza C, Schlereth A, Sulpice R, Hincha DK, Hannah MA (2008) Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol 147:263-279 https://doi.org/10.1104/pp.108.118059
  3. Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16 Suppl:S18-S31 https://doi.org/10.1105/tpc.015958
  4. Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630-633 https://doi.org/10.1126/science.1115581
  5. Edger PP, Pires JC (2009) Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res 17:699-717 https://doi.org/10.1007/s10577-009-9055-9
  6. Eriksson ME, Millar AJ (2003) The circadian clock: a plant's best friend in a spinning world. Plant Physiol 132:732-738 https://doi.org/10.1104/pp.103.022343
  7. Gomez-Campo C (1999) Developments in plant genetics and breeding, vol 4. Biology of Brassica coenospecies. Elsevier, Amsterdam Lausanne New York Oxford Shannon Singapore
  8. Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357-377 https://doi.org/10.1146/annurev.arplant.043008.092054
  9. Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16 Suppl:S1-S17 https://doi.org/10.1105/tpc.017038
  10. Kim JA, Kim JS, Hong JK, Lee YH, Choi BS, Seol YJ, Jeon CH (2012) Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa. Mol Genet Genomics 287:373-388 https://doi.org/10.1007/s00438-012-0682-z
  11. Kim JA, Yang TJ, Kim JS, Park JY, Kwon SJ, Lim MH, Jin M, Lee SC, Lee SI, Choi BS, Um SH, Kim HI, Chun C, Park BS (2007) Isolation of circadian-associated genes in Brassica rapa by comparative genomics with Arabidopsis thaliana. Mol Cells 23:145-153
  12. Kim JK, Ahn DC, Oh HJ, Kim KH, Choi YM, Oh SY, Kang NJ, Jeong BR, Kim ZH, Park YH (2010) Skewed Inheritance of EST-SSR Alleles in Reciprocal Crosses of Cut Roses. Kor. J. Hort. Sci. Technol. 28:618-626
  13. Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29-39 https://doi.org/10.1534/genetics.106.060152
  14. Kim SY, Park BS, Kwon SJ, Kim J, Lim MH, Park YD, Kim DY, Suh SC, Jin YM, Ahn JH, Lee YH (2007) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep 26:327-336 https://doi.org/10.1007/s00299-006-0243-1
  15. Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877-1888 https://doi.org/10.1093/mp/sst088
  16. Lou P, Wu J, Cheng F, Cressman LG, Wang X, McClung CR (2012) Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell 24:2415-2426 https://doi.org/10.1105/tpc.112.099499
  17. Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397-409 https://doi.org/10.1007/s00122-011-1592-x
  18. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassicaceae. Genome Res 15:516-525 https://doi.org/10.1101/gr.3531105
  19. Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T. (2000) Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 41:791-803 https://doi.org/10.1093/pcp/41.6.791
  20. Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol. 41:1002-1012 https://doi.org/10.1093/pcp/pcd043
  21. McClung CR (2010) A modern circadian clock in the common angiosperm ancestor of monocots and eudicots. BMC Biol 8:55 https://doi.org/10.1186/1741-7007-8-55
  22. Michae TP, Salome PA, McClung CR (2003) Two Arabidopsis circadian oscillators can be distinguished by differential temperature sensitivity. Proc Natl Acad Sci U S A 100:6878-6883 https://doi.org/10.1073/pnas.1131995100
  23. Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55:277-283
  24. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na JK, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Perez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo MC, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991-996 https://doi.org/10.1038/nature06856
  25. Mizuno T, Nakamichi N (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol. 46:677-685 https://doi.org/10.1093/pcp/pci087
  26. Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:Suppl:S111-S130 https://doi.org/10.1105/tpc.001362
  27. Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T (2003) The evolutionarily conserved OsPRR quintet: rice pseudoresponse regulators implicated in circadian rhythm. Plant Cell Physiol 44:1229-1236 https://doi.org/10.1093/pcp/pcg135
  28. Murakami M, Matsushika A, Ashikari M, Yamashino T, Mizuno T (2005) Circadian-associated rice pseudo response regulators (OsPRRs): insight into the control of flowering time. Biosci. Biotechnol. Biochem. 69:410-414 https://doi.org/10.1271/bbb.69.410
  29. Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA, Lim MH, Kim JS, Baek S, Choi BS, Yu HJ, Kim DS, Kim N, Lim KB, Lee SI, Hahn JH, Lim YP, Bancroft I, Park BS (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111 https://doi.org/10.1186/gb-2009-10-10-r111
  30. Nakamichi N, Kita M, Niinuma K, Ito S, Yamashino T, Mizoguchi T, Mizuno T (2007) Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS dependent photoperiodic pathway. Plant Cell Physiol 48:822-832 https://doi.org/10.1093/pcp/pcm056
  31. Omolade O, Müller AE, Jung C, Melzer S (2016) BvPRR7 is a cold responsive gene with a clock function in beet. Biologia Plantarum 60:95-104 https://doi.org/10.1007/s10535-015-0568-0
  32. Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123-1129
  33. Ramirez-Carvajal GA, Morse AM, Davis JM (2008) Transcript profiles of the cytokinin response regulator gene family in Populus imply diverse roles in plant development. New Phytol 177:77-89
  34. Ream TS, Woods DP, Amasino RM (2013) The molecular basis of vernalization in different plant groups. Cold Spring Harb Symp Quant Biol 2012. 77:105-115
  35. Simpson GG, Gendall AR, Dean C (1999) When to switch to flowering. Annu Rev Cell Dev Biol 99:519-550
  36. Takata N, Saito S, Saito CT, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol 10:126 https://doi.org/10.1186/1471-2148-10-126
  37. Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348-1359 https://doi.org/10.1105/tpc.106.041665
  38. Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339-1347 https://doi.org/10.1105/tpc.105.040535
  39. Yuan YX, Wu J, Sun RF, Zhang XW, Xu DH, Bonnema G, Wang XW (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60:1299-1308 https://doi.org/10.1093/jxb/erp010