Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- C. Adams, J. Haas, and P. Scott, Simple closed geodesic in hyperbolic 3-manifolds, Bull. London Math. Soc. 31 (1999), no. 1, 81-86. https://doi.org/10.1112/S0024609398004883
- L. V. Ahlfors, Mobius transformations and Clifford numbers, Differential Geometry and Complex Analysis, H. E. Rauch memorial volume, 65-73, Springer-Verlag, Belin, 1985.
- L. V. Ahlfors, Old and new in Mobius groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 93-105. https://doi.org/10.5186/aasfm.1984.0901
-
L. V. Ahlfors, On the fixed points of Mobius transformation in
${\mathbb{R}}^n$ , Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27. https://doi.org/10.5186/aasfm.1985.1005 - A. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, Vol. 91, Springer-Verlag, New York, 1983.
- C. Cao and P. L. Waterman, Conjugacy invariants of Mobius groups, Quasiconformal Mappings and Analysis, 109-139, Springer, 1995.
-
T. A. Drumm and J. A. Poritz, Ford and Dirichlet domains for cyclic subgroups of
$PSL_2({\mathbb{C}})$ acting on${\mathbb{H}}_{{\mathbb{R}}}^3$ and${\partial}{\mathbb{H}}_{{\mathbb{R}}}^3$ , Conform. Geom. Dyn. 3 (1999), 116-150. https://doi.org/10.1090/S1088-4173-99-00042-9 - S. Hersonsky, Covolume estimates for discrete groups of hyperbolic isometries having parabolic elements, Michigan Math. J. 40 (1993), no. 3, 467-475. https://doi.org/10.1307/mmj/1029004832
- T. Jorgensen, On cyclic groups of Mobius transformations, Math. Scand. 33 (1973), 250-260. https://doi.org/10.7146/math.scand.a-11487
- Y. Kim, Rigidity and stability for isometry groups in hyperbolic 4-space, Thesis, The Graduate Center, City University of New York, 2008.
- B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, 1988.
- J. Ratcliffe, Foundation of Hyperbolic Manifolds, Graduate Texts in Mathematics, 149. Springer-Verlag, New York, 1994.
- S. P. Tan, Y. L. Wong, and Y. Zhang, Delambre-Gauss formulas for augmented rightangled hexagons in hyperbolic 4-space, Adv. Math. 230 (2012), no. 3, 927-956. https://doi.org/10.1016/j.aim.2012.03.009
- K. Th. Vahlen, Uber Bewegungen und complexe Zahlen, Math. Ann. 55 (1902), no. 4, 585-593. https://doi.org/10.1007/BF01450354
- M. Wada, Conjugacy invariants of Mobius transformations, Complex Variables Theory Appl. 15 (1990), no. 2, 125-133. https://doi.org/10.1080/17476939008814442
- P. L. Waterman, Mobius transformation in several dimensions, Adv. Math. 101 (1993), no. 1, 87-113. https://doi.org/10.1006/aima.1993.1043
- J. B. Wilker, The quaternion formalism for Mobius groups in four or fewer dimensions, Linear Algebra Appl. 190 (1993), 99-136. https://doi.org/10.1016/0024-3795(93)90222-A